NOAA Technical Report NMFS SSRF-685

An Annotated List of Larval and Juvenile Fishes Captured With Surface-Towed Meter Net in the South Atlantic Bight During Four RV *Dolphin* Cruises Between May 1967 and February 1968

MICHAEL P. FAHAY

SEATTLE WA

March 1975

noaa

NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Marine Fishenes Service

National Marine Fisheries Service, Special Scientific Report-Fisheries Series

The major responsibilities of the National Marine Fisheries Service (NMFS) are to monitor and assess the abundance and geographic distribution of fishery resources, to understand and predict fluctuations in the quantity and distribution of these resources, and to establish levels for optimum use of the resources. NMFS is also charged with the development and implementation of policies for managing national fishing grounds, development and enforcement of domestic fisheries regulations, surveillance of foreign fishing off United States coastal waters, and the development and enforcement of international fishery agreements and policies. NMFS also assists the fishing industry through marketing service and economic analysis programs, and mortgage insurance and vessel construction subsidies. It collects, analyzes, and publishes statistics on various phases of the industry.

The Special Scientific Report – Fisheries series was established in 1949. The series carries reports on scientific investigations that document long-term continuing programs of NMFS, or intensive scientific reports on studies of restricted scope. The reports may deal with applied fishery problems. The series is also used as a medium for the publication of bibliographies of a specialized scientific nature.

NOAA Technical Reports NMFS SSRF are available free in limited numbers to governmental agencies, both Federal and State. They are also available in exchange for other scientific and technical publications in the marine sciences. Individual copies may be obtained (unless otherwise noted) from D83, Technical Information Division, Environmental Science Information Center, NOAA, Washington, D.C. 20235. Recent SSRF's are

619. Macrozooplankton and small nekton in the coastal waters off Vancouver Island (Canada) and Washington, spring and fall of 1963. By Donald S. Day, January 1971, iii + 94 pp., 19 figs., 13 tables

620. The Trade Wind Zone Oceanography Pilot Study. Part IX: The sea-level wind field and wind stress values, July 1963 to June 1965. By Gunter R. Seckel, June 1970, iii + 66 pp., 5 figs.

621. Predation by sculpins on fall chinook salmon, Oncorhynchus tshauytscho, fry of hatchery origin. By Benjamin G. Patten, February 1971, iii + 14 pp., 6 figs., 9 tables.

622. Number and lengths, by season, of fishes caught with an otter trawl near Woods Hole, Massachusetts, September 1961 to December 1962, By F. E. Lux and F. E. Nichy, February 1971, iii + 15 pp., 3 figs., 19 tables.

623. Apparent abundance, distribution, and migrations of albacore, *Thunnus ololungo*, on the North Pacific longline grounds. By Brian J. Rothschild and Marian Y. Y. Yong. September 1970, v + 37 pp., 19 figs., 5 tables.

624. Influence of mechanical processing on the quality and yield of bay scallop meats. By N. B. Webb and F. B. Thomas. April 1971, iii + 11 pp., 9 figs., 3 tables.

625. Distribution of salmon and related oceanographic features in the North Pacific Ocean, spring 1968. By Robert R. French, Richard G. Bakkala, Masanao Osako, and Jun Ito. March 1971, iii + 22 pp., 19 figs., 3 tahles.

626. Commercial fishery and biology of the freshwater shrimp, *Mocrobrochium*, in the Lower St. Paul River, Liberia, 1952-53. By George C. Miller, February 1971, iii + 13 pp., 8 figs., 7 tables.

627. Calico scallops of the Southeastern United States, 1959-69. By Robert Cummins, Jr. June 1971, iii + 22 pp., 23 figs., 3 tables.

628. Fur Seal Investigations, 1969. By NMFS, Marine Mammal Biological Laboratory. August 1971, 82 pp., 20 figs., 44 tables, 23 appendix A tables, 10 appendix B tables.

629. Analysis of the operations of seven Hawaiian skipjack tuna fishing vessels, June-August 1967. By Richard N. Uchida and Ray F. Sumida. March 1971, v + 25 pp., 14 figs., 21 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

630. Blue crab meat. 1 Preservation by freezing July 1971, iii + 13 pp., 5 figs., 2 tables. II Effect of chemical treatments on acceptability. By Jurgen H. Strasser, Jean S. Lennon, and Frederick J King. July 1971, iii + 12 pp., 1 fig., 9 tables.

631. Occurrence of thiaminase in some common aquatic animals of the United States and Canada. By R. A. Greig and R. H. Gnaedinger. July 1971, iii + 7 pp., 2 tables.

632. An annotated bibliography of attempts to rear the larvae of marine fishes in the laboratory. By Rohert C May, August 1971, iii + 24 pp., 1 appendix I table, 1 appendix II table. For sale hy the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402

633. Blueing of processed crab meat. II. Identification of some factors involved in the blue discoloration of canned crab meat *Collinectes sopidus*. By Melvin E. Waters, May 1971, iii + 7 pp., 1 fig., 3 tables.

634 Age composition, weight, length, and sex of herring, *Clupeo pallasii*, used for reduction in Alaska, 1929-66. By Gerald M. Reid, July 1971, iii + 25 pp., 4 figs., 18 tables.

635. A bibliography of the blackfin tuna, *Thunnus otlanticus* (Lesson). By Grant L. Beardsley and David C. Simmons. August 1971, 10 pp. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

636. Oil pollution on Wake Island from the tanker R. C. Stoner. By Reginald M. Gooding. May 1971, iii + 12 pp., 8 figs., 2 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

637. Occurrence of larval, juvenile, and mature crabs in the vicinity of Beaufort Inlet, North Carolina By Donnie L. Dudley and Mayo H. Judy. August 1971, iii + 10 pp., 1 fig., 5 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

638. Length-weight relations of haddock from commercial landings in New England, 1931-55. By Bradford E. Brown and Richard C. Hennemuth. August 1971, v + 13 pp., 16 figs., 6 tables, 10 appendix A tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

639. A hydrographic survey of the Galveston Bay system, Texas 1963-66. By E. J. Pullen, W. L. Trent, and G. B. Adams. October 1971, v + 13 pp., 15 figs., 12 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

640. Annotated bibliography on the fishing industry and biology of the blue crab, *Collinectes sopidus*. By Marlin E. Tagatz and Ann Bowman Hall. August 1971, 94 pp. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

641. Use of threadfin shad, Dorosomo petenense, as live bait during experimental poleand-line fishing for skipjack tuna, Katsuwonus pelamis, in Hawaii, By Robert T. B. Iversen, August 1971, iii + 10 pp., 3 figs., 7 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

642. Atlantic menhaden *Brevoortia tyrannus* resource and fishery—analysis of decline. By Kenneth A. Henry, August 1971, v. + 32 pp., 40 figs., 5 appendix figs., 3 tables, 2 appendix tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

643. Surface winds of the southeastern tropical Atlantic Ocean By John M. Steigner and Merton C. Ingham. October 1971, fii + 20 pp., 17 figs. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

644. Inhibition of flesh browning and skin color fading in frozen fillets of yelloweye snapper (Lutzanus vivanus). By Harold C. Thompson, Jr., and Mary H. Thompson. February 1972, iii ± 6 pp., 3 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

645. Traveling screen for removal of debris from rivers By Daniel W. Bates, Ernest W. Murphey, and Martin G. Beam. October 1971, iii + 6 pp., 6 figs., I table. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

646. Dissolved nitrogen concentrations in the Columbia and Snake Rivers in 1970 and their effect on chinook salmon and steelbead trout. By Wesley J. Ebel. August 1971, iii + 7 pp., 2 figs., 6 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

647. Revised annotated list of parasites from sea mammals caught off the west coast of North America. By L. Margolis and M. D. Dailey March 1972, in + 23 pp. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

Continued on inside back cover

NOAA Technical Report NMFS SSRF-685

An Annoted List of Larval and Juvenile Fishes Captured With Surface-Towed Meter Net in the South Atlantic Bight During Four RV *Dolphin* Cruises Between May 1967 and February 1968

MICHAEL P. FAHAY

SEATTLE WA

March 1975

UNITED STATES DEPARTMENT OF COMMERCE Frederick B. Dent, Secretary NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION Robert M. White, Administrator National Marine Fisheries Service Robert W. Schoning, Director

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 The National Marine Fisheries Service (NMFS) does not approve, recommend or endorse any proprietary product or proprietary material mentioned in this publication. No reference shall be made to NMFS, or to this publication furnished by NMFS, in any advertising or sales promotion which would indicate or imply that NMFS approves, recommends or endorses any proprietary product or proprietary material mentioned herein, or which has as its purpose an intent to cause directly or indirectly the advertised product to be used or purchased because of this NMFS publication.

CONTENTS

																								Page
Introduction																								
Materials and metho																								
Results				•	 •	•	• •					• •	 • •					• •					• •	. 3
List of fishes																								
Elopidae													 									•		. 14
Muraenidae																								
Congridae													 											. 14
Ophichthidae .				•	 								 											14
Nemichthyidae													 											14
Clupeidae													 											15
Engraulidae																								
Synodontidae .																								
Myctophidae .																								
Antennariidae																								
Gadidae																								
Ophidiidae	-																							
Exocoetidae																								
Belonidae																								
Atherinidae																								
Holocentridae .																								
Syngnathidae .																								
Priacanthidae .																								
Apogonidae																								
Pomatomidae .																								
Echeneidae																								
Carangidae																								
Coryphaenidae																								
Lutjanidae																								
Lobotidae																								
Sparidae																								
Sciaenidae		 •	• •	• •	 			•			 •		 •	 •		•	•		•	•	 •	•		
Mullidae																								
Kyphosidae																								
Chaetodontidae		 •		• •	 					•	 		 							•				
Pomacentridae		 			 								 		• •		•			•				26
Mugilidae		 •			 								 							•			• •	. 26
Sphyraenidae .		 	• •		 								 											. 27
Uranoscopidae		 			 								 											. 27
Blenniidae		 			 						 		 											. 27
Gobiidae		 			 						 		 											. 27
Gempylidae																								~-
Scombridae		 			 						 		 											27
Xiphiidae																								. 30
																								. 30
· · · ·	•	 · ·			• •		• •	•	• •		 	-	 											0.0
~																								
Triglidae																								
Dactylopteridae																								~ ~
Bothidae																								
Soleidae																								
Cynoglossidae																								0.0
	-	 		•••	 			-					 								•	•	• •	. 32 . 32
Balistidae																					•	•	• •	. 32 . 35
Ostraciidae	-	 			 	-															•	•	• •	
Tetraodontidae				•••																	•	•	• •	. 35
				• •																	•	•	• •	. 35
Unidentified .		 									 		 											. 35

Acknowledgments				 							• •				 			• •				•		35
Literature Cited .				 	•			•		•							•		 •			•	 1	36

Figures

1.	RV Dolphin survey, 1967-68	2
2.	Familial constituents of total surface-towed, meter net catch during 1967-68	5
	Surface temperatures observed during spring, 1967	6
4.	Surface temperatures observed during summer, 1967	7
5.	Surface temperatures observed during fall, 1967	8
6.	Surface temperatures observed during winter, 1968	9
7.	Number of fish categories caught during spring, 1967	10
	Number of fish categories caught during summer, 1967	
9.	Number of fish categories caught during fall, 1967	12
	Number of fish categories caught during winter, 1968	
	Distribution of spotted hake during winter, 1968	
12.	Abundance of spotted hake relative to surface temperatures during winter, 1968	18
13.	Postlarval Apogon maculatus	21
14.	Juvenile Elagatis bipinnulata	23
	Unidentified postlarval Lutjanus sp	
	Distribution of striped mullet during winter, 1968	
	Distribution of white mullet during spring, 1967	
18.	Head of hypothetical istiophorid larva	30
19.	Occurrence of two species of Monacanthus during four survey cruises	34

Tables

1.	RV Dolphin survey, 1967-68. Locations of collecting stations	3
2.	Summary of fish categories showing numbers caught and seasons present	4
3.	Number caught and length range for three species of flyingfishes	19
4.	Diel occurrences and maximum sizes of two species of halfbeaks	19
5.	Summary of catch data for Decapterus punctatus	23
6.	Dolphin: number caught and length range	24
7.	Seasonal catch of two species of mullet	27
8.	Summary of catch data for Bothus ocellatus	31
	Diel variations in catch of juvenile tetraodontids	

Appendix Table

Station list	 	 	 38

An Annotated List of Larval and Juvenile Fishes Captured With Surface-Towed Meter Net in the South Atlantic Bight During Four RV *Dolphin* Cruises Between May 1967 and February 1968

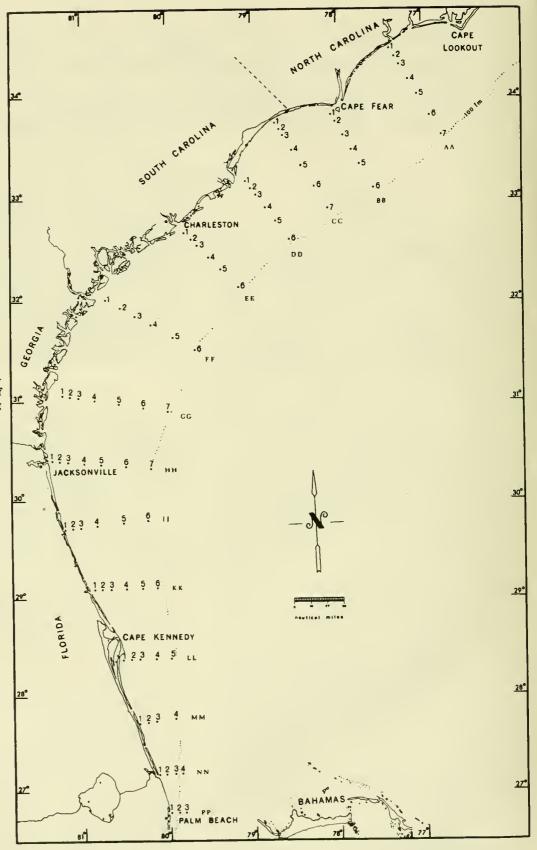
MICHAEL P. FAHAY'

INTRODUCTION

In December 1965, the Sandy Hook Laboratory began a 2 yr preliminary survey of the Atlantic continental shelf to determine spawning times and locations for marine fishes and to describe dispersal patterns of larvae and juveniles. During the first year we worked from Martha's Vineyard, Mass., to Cape Lookout, N.C. (Clark et al. 1969). Beginning in May 1967, we sampled the South Atlantic Bight from New River, N.C., to Palm Beach, Fla., at quarterly intervals. A description of our sampling technique, temperature and salinity profiles, zooplankton volumes, and a familial list of young fishes collected in a surface-towed meter net are presented in Clark et al. (1970). The purpose of this report is to list the fishes caught in the meter net by species and to comment on some of the occurrences.

Several faunal lists (mostly of demersal fishes) pertaining to the South Atlantic Bight have recently been published. Struhsaker (1969) presented a list of demersal fishes captured during a 5 yr trawling survey of the continental shelf off southeastern United States. Bullis and Thompson (1965) listed fishes taken with a variety of gears (mostly trawls) during a four-vessel survey of the shelf and slope from Cape Hatteras to Brazil. Anderson (1968) presented records of fishes taken during shrimp trawling operations between Cape Romain, S.C., and Cape Kennedy, Fla.

Dooley (1972) listed fishes closely associated with sargassum in the Florida Current near Miami. An important difference between his work and that reported here is depth and location of sampling. Dooley intended to sample fishes associated with sargassum while our intent was to sample the surface ichthyofauna at stations along the cruise track of our survey. Dooley thus used a purse seine to collect fishes in the upper 5.2 m of the water column around sargassum accumulations, while we used a net which never sampled deeper than 1 m and we also sampled the surface close to shore and away from weed accumulations. Furthermore, Dooley selected large rafts of sargassum to surround with his purse seine while we sampled along straight lines originating at predetermined stations, and sampled sargassum only as chance provided small clumps in the path of our net. Therefore, Dooley specifically sampled the sargassum community while we sampled the surface fauna which occasionally included the sargassum community. Although we noticed close associations of some species to sargassum clumps, it was a shortcoming of our sampling procedure that we neglected to record the volume of weed contained in the net on each tow.


MATERIALS AND METHODS

Collecting stations are shown in Figure 1 and their positions are listed in Table 1. The Appendix Table contains dates, times, and physical data pertaining to each cruise and station. Positions are based on LORAN navigation and are accurate to within 1.8 km (1 nautical mile). Surface temperatures were obtained with stem thermometers, accurate to $\pm 0.1^{\circ}$ C, mechanical bathythermographs, and a strip-chart recorder which provided a continuous record over the cruise track. Salinities were measured with a Tsurumi Salinity, Temperature, Depth Recorder during the May cruise; thereafter with a Beckman RS5-3 Salinometer. Sunrise and sunset times (U.S. Coast and Geodetic Survey 1967, 1968) were corrected for latitude, longitude, and local time. When any part of a tow occurred within 1 h of sunrise or sunset, that tow was considered a crepuscular one and is labelled either "dawn" or "dusk" in the Appendix Table.

The net we used to sample the surface ichthyofauna consisted of a reinforced steel ring 1 m in diameter to which was attached a 4 m long conical nylon net with rectangular apertures of 3.3×6.4 mm (0.13 \times 0.25 in). The net was connected to the fixed towing line with a three-legged bridle and was towed from an outboard boom which held the net about 2 m away from the hull of the vessel while sampling. The mouth of the net was amidships, well behind the bow wake. Approximately 75% of the mouth was submerged at all times. Tows lasted 30 min and covered about 4.6 km (2.5 nautical miles). When the net contained sargassum weed, we picked through it manually

^{&#}x27;Middle Atlantic Coastal Fisheries Center, National Marine Fisheries Service, NOAA, Highlands, NJ 07732.

Figure 1.—RV Dolphin survey, 1967-68. Locations of transects and collecting stations.

.

				Stations			
Transect	1	2	3	4	5	6	7
AA	34°28.5′	34°24.0'	34°20.0′	34°11.0′	34°02.5'	33°49.5′	33°37.0
	77°23.0'	77°19.5'	77°16.5′	77°10.5′	77°04.5'	76°55.5′	76°47.0
BB	33°49.5′	33°45.5′	33°36.5′	33°28.0′	33°19.5'	33°06.0′	
	78°03.5′	78°01.0′	77°55.0'	77°49.5′	77°44.0′	77°35.0′	
CC	33°44.5′	33°40.5′	33°36.0'	33°27.5′	33°19.5′	33°06.5′	32°54.0
	78°44.0′	78°41.0′	78°37.5'	78°31.5′	78°25.0′	78°15.5′	78°06.5
DD	33°10.5′	33°06.5′	33°02.5′	32°54.5′	32°46.5′	32°35.5′	
	79°05.5′	79°02.0′	78°58.0′	78°51.0′	78°44.0′	78°34.0′	
EE	32°39.5'	32°35.5′	32°32.0′	32°25.0′	32°18.0′	32°07.5′	
	79°49.0′	79°44.0′	79°40.0′	79°31.0′	79°22.0′	79°09.5′	
FF	32°00.0′	31°55.0′	31°49.5′	31°44.5'	31°37.5′	31°30.0′	
	80°43.0′	80°32.5'	80°21.5′	80°10.5′	79°56.0′	79°40.5′	
GG	31°03.0′	31°02.0	31°01.5′	31°00.0	30°58.0'	30°55.5′	30°54.0
	81°14.0′	81°08.0'	81°02.5′	80°51.0′	80°34.0′	80°17.0′	80°00.0
нн	30°24.0′	30°23.5′	30°23.0′	30°22.0′	30°21.5′	30°20.0	30°19.0
	81°22.0′	81°16.0′	81°10.0′	80°59.0	80°47.5′	80°30.0′	80°13.0
JJ	29°42.5′	29°43.0′	29°43.5′	29°45.0	29°46.5'	29°48.5′	
	81°13.0′	81°07.0′	81°02.0′	80°49.5	80°32.0′	80°14.0′	
KK	29°05.0'	29°05.0′	29°05.5'	29°05.5′	29°06.0′	29°06.0'	
	80°53,5'	80°47.5'	80°42.0′	80°30.5	80°19.0'	80°08.0'	
LL	28°22,5′	28°22.5'	28°23.0′	28°23.5	28°24.0′		
	80°32.0′	80°26.5	80°21.0′	80°09.5	79°58.0′		
MM	27°42.5′	27°43.0'	27°44.0′	27°46.0′			
	80°21.0′	80°15.5′	80°10.0'	79°55.5			
NN	27°10.0'	27°10.5	27°11.0	27°11.5′			
	80°08.0′	80°02.5′	79°56.5'	79°50.5′			
PP	26°46.0'	26°46.5′	26°47.0'				
	80°01.0'	79°55.5′	79°50.0'				

 Table 1.—RV Dolphin survey, 1967-68. Locations of collecting stations. Locations are given by coordinates of north latitude over west longitude, listed to the nearest 0.5 nautical mile (0.9 km).

because we found that agitating the weed in water did not dislodge certain fishes (notably balistids, antennariids, syngnathids, gadids, and anguilliform leptocephali). All fishes captured were preserved for later identification and measurement.

The arrangement of the list of fishes is phylogenetic and follows Greenwood et al. (1966). Names follow Bailey et al. (1970). The catch of each species is separated by cruise (italicized) then listed as follows: station where caught, total number captured, length or length range in millimeters. Measurements are of fork length, unless SL (standard length) or TL (total length) are specified. The designation "mut" indicates that identification or measurement was impossible due to mutilation of the specimen.

RESULTS

We caught 10,741 fishes belonging to 158 categories including 51 families and 107 identified species (Table 2). Variety of species was greatest within the families Carangidae (17 species), Balistidae (13 species), and Exocoetidae (15 species). The proportions of the total catch contributed by each family are shown in Figure 2.

Over the inshore part of the shelf, catches were augmented when we sampled along windrows of debris and stems of *Phragmites* sp. and *Spartina* sp. Offshore catches were augmented when we sampled among rafts of sargassum.

Surface temperatures over the offshore part of the shelf varied little throughout the year (Fig. 3-6, and Clark et al. 1970) and this stability was reflected in a fairly uniform catch during all four seasons. Fishes strongly seasonal in occurrence (such as *Mugil cephalus*, *Mullus auratus*, *Pomatomus saltatrix*, and *Urophycis regius*) were taken mainly over the inshore part of the shelf where temperatures ranged from 7.8°C in January to 28.1°C in July.

Several species were surprisingly absent from our collections (for example the carangids *Trachurus lathami* and *Selene vomer* and larvae of the family Acanthuridae) or were collected only rarely despite their reportedly common status (for example *Selar crumenophthalmus*, *Lobotes surinamensis*, and *Cantherhines pullus*). These species may be common under rafts of sargassum and susceptible to capture by Dooley's (1972) purse seine but may not be strongly enough surface oriented to be susceptible to capture with a net towed within 1 m of the surface.

Opportunities for comparing day and night catches are limited since we never occupied a station long enough to sample consecutively during both light regimes. Catches of some species, however, were noticeably greater at night. The halfbeaks

	Total	Number caught per	Sancone		Total	Number caught per	Saaaana
Category		occurrence		Category		occurrence	
Elops saurus	12	1.09	SpSFW	Apogon maculatus	1	1.00	S
Unidentified Muraenidae	33	1.94	SpSF	Apogon sp.	1	1.00	Sp
Unidentified Congridae	7	1.16	SFW	Astrapogon sp.	2	2.00	Ŵ
Bascanichthys sp.	1	1.00	W	Pomatomus saltatrix	14	1.27	Sp
Myrophis punctatus	1	1.00	W	Remora remora	2	2.00	S
Unidentified Ophichthidae	44	2.44	SpSFW	Caranx bartholomaei	19	1.26	SpSFW
Unidentified Nemichthyidae	3	1.00	WSp	C. fusus	59	3.10	SpSFW
Brevoortia tyrannus	17	8.50	W	C. hippos	5	1.66	SpS
Brevoortia sp.	87	9.66	W	C. latus	2	1.00	SpS
Etrumeus teres	34	11.33	W	C. ruber	59	2.68	SpSF
Opisthonema oglinum	3	1.00	SF	Caranx sp.	11	1.57	WSpS
Sardinella anchovia	49	9.80	SpSFW	Chloroscombrus chrysurus	8	1.60	SpSF
Unidentified Clupeidae	112	7.46	SpSFW	Decapterus punctatus	826	12.32	SpSFW
Anchoa hepsetus	219	24.33	SpSFW	Elagatis bipinnulata	8	1.14	SpS
A. mitchilli	33	8.25	WSp	Naucrates ductor	2	1.00	Sp
A. nasuta	81	13.50	SFW	Selar crumenophthalmus	3	1.00	SpS
Anchoa sp.	123	9.46	SpSFW	Seriola dumerili	11	1.57	FWSp
Engraulis eurystole	1	1.00	Ŵ	S. fascioto	2	1.00	SF
Unidentified Engraulidae	61	3.38	SpSFW	S. rivoliana	8	1.33	SF
Synodus foetens	7	1.75	WSp	S. zonata	1	1.00	Sp
Unidentified Synodontidae	2	1.00	W	Seriola sp.	73	1.97	SpSFW
Unidentified Myctophidae	10	2.50	FW	Trachinotus carolinus	15	1.87	Sp
Histrio histrio	48	1.65	SpSFW	T. falcatus	9	1.28	SpSFW
Urophycis earlli	2	1.00	W	T. goodei	2	1.00	SF
U. floridanus	15	2.14	W	Trachinotus sp.	4	1.00	SpS
U. regius	2,678	58.22	WSp	Unidentified Carangidae	4	1.33	S
Urophycis sp.	5	2.50	Sp	Coryphaena equisetis	16	1.60	SpSFW
Unidentified Ophidiidae	3	1.00	SpF	C. hippurus	76	1.68	SpSFW
Chriodorus atherinoides	1	1.00	Ŵ	Rhomboplites aurorubens	1	1.00	S
Cypselurus cyanopterus	1	1.00	F	Unidentified Lutjanidae	2	1.00	S
C. exsiliens	1	1.00	F	Lobotes surinamensis	1	1.00	F
C. furcatus	1	1.00	Sp	Stenotomus chrysops	3	1.00	Sp
C. heterurus	75	1.70	SpSFW	Unidentified Sparidae	637	26.54	FWSp
Cypselurus sp.	1	1.00	F	Cynoscion nothus	5	5.00	F
Euleptorhamphus velox	1	1.00	F	Larimus fasciatus	1	1.00	F
Exocoetus obtusirostris	10	2.50	WSp	Leiostomus xanthurus	22	2.44	FW
E. volitans	3	1.00	WSp	Stellifer lanceolatus	1	1.00	F
Hemiramphus brasiliensis	64	2.06	SpSFW	Mullus auratus	126	4.06	WSp
Hirundichthys affinis	2	1.00	WSp	Pseudupeneus maculatus	1	1.00	Sp
H. rondeleti	7	1.40	SpS	Unidentified Mullidae	23	2.87	WSp
Hyporhamphus unifasciatus	40	3.07	SpSFW	Kyphosus incisor	9	1.12	SFW
Oxyporhamphus micropterus	5	1.66	SF	K. sectatrix	9	2.25	F
Parexocoetus brachypterus	164	3.72	SpSF	Holacanthus tricolor	1	1.00	F
Prognichthys gibbifrons	62	1.59	SpSFW	Pomacanthus arcuatus	1	1.00	F
Jnidentified Exocoetidae	11	1.22	WSpS	Unidentified Chaetodontidae	1	1.00	S
Tylosurus acus	3	1.00	SpSF	Abudefduf saxatilis	17	1.70	FW
<i>Tylosurus</i> sp.	1	1.00	F	Chromis sp.	1	1.00	F
Membras martinica	144	28.80	FW	Unidentified Pomacentridae	2	1.00	Sp
Menidia menidia	41	5.85	FW	Mugil cephalus	174	4.83	FWSp
lolocentrus sp.	16	1.60	SpSF	M. curema	393	6.14	SpSFW
Amphelikturus dendriticus	1	1.00	Ŵ	Mugil sp.	67	3.04	WSp
lippocampus erectus	14	1.27	SpSFW	Sphyraena barracuda	2	1.00	s
lippocampus sp.	9	1.12	WSpS	S. borealis	10	1.11	FWSp
Syngnathus elucens	2	1.00	WSp	Unidentified Uranoscopidae	19	1.58	SpSFW
S. fuscus	1	1.00	W	Unidentified Blenniidae	35	2.18	SpSFW
S. pelagicus	9	1.00	SpSFW	Unidentified Gobiidae	2	2.00	S
S. springeri	12	1.20	WSp	Diplospinus multistriatus	2	1.00	FW
Syngnathus sp.	2	2.00	F	Auxis sp.	31	2.81	WSpS
Pristigenys alta	44	3.66	s	Euthynnus alletteratus	8		S

Table 2Summary of fish categories showing numbers caught
and seasons present—Continued.

and seasons present	Contin		
	Total	Number	
	number	caught per	Seasons
Category	caught	occurrence	present
Scomber japonicus	6	1.20	WSp
Scomberomorus maculatus	4	1.00	SpS
Thunnus sp.	2	1.00	SpS
Xiphias gladius	8	1.33	FWSp
Istiophorus platypterus	1	1.00	Sp
Makaira nigricans	1	1.00	S
Unidentified Istiophoridae (a.)	5	1.66	Sp
Unidentified Istiophoridae (b.)	27	1.92	SpSF
Nomeus gronovii	6	1.50	WSp
Peprilus triacanthus	166	6.15	SpSFW
Psenes cyanophrys	13	1.00	WSpS
Scorpaena sp.	8	1.14	SpSFW
Unidentified Triglidae	7	1.40	SpF
Dactylopterus volitans	3	1.00	SpS
Bothus ocellatus	266	4.29	SpSFW
Unidentified Bothidae	31	2.81	SpSFW
Gymnachirus melas	1	1.00	W
Symphurus sp.	1	1.00	F
Aluterus heudeloti	5	1.00	SpSF
A. monoceros	3	1.50	SF
A. schoepfi	9	1.12	SpSF
A. scriptus	13	1.44	SpSF
Aluterus sp.	1	1.00	Sp
Balistes capriscus	44	2.20	SF
Balistes sp.	4	2.00	S
Cantherhines pullus	7	1.40	SF
Canthidermis maculatus	17	1.42	SpSFW
C. sufflamen	8	4.00	SpF
Monacanthus ciliatus	154	2.96	SpSFW
M. hispidus	421	4.43	SpSFW
M. setifer	301	11.58	SpSFW
M. tuckeri	3	1.50	SW
Xanthichthys ringens	1	1.00	F
Unidentified triggerfishes	5	1.00	SpS
Unidentified filefishes	1,536	11.63	SpSFW
Unidentified Ostraciidae	4	1.00	FWSp
Sphoeroides sp.	312	3.95	SpSFW
Diodon holocanthus	1	1.00	S
Diodon hystrix	1	1.00	S
Unidentified	47	1.74	SpSFV
Totals	10,741	39.63	

Hemiramphus brasiliensis and Hyporhamphus unifasciatus, for example, were both more numerous and larger in night tows than in day tows. Conversely the round scad, Decapterus punctatus, and puffers of the genus Sphoeroides were prevalent in day tows. The accumulating effect of weed during all hours, however, might modify the diel behavior of juvenile fishes for day-night differences in the catch of most species closely associated with sargassum were not apparent.

Although the larvae of many species were caught during more than one cruise, if not throughout the year, spawning which contributes young fishes to the surface fauna of the South Atlantic Bight is at a max-

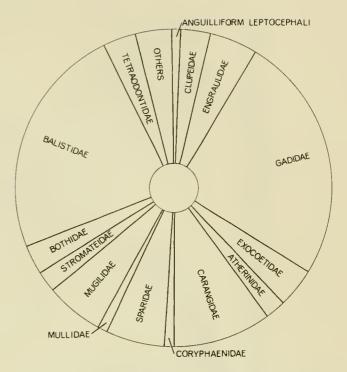


Figure 2.—Familial constituents of total surface-towed, meter net catch during 1967-68.

imum in the spring and summer. Figures 7 through 10 show the seasonal diversity in larval and juvenile ichthyofauna at the surface. During the winter (Fig. 10), the ranges of the few species occurring in inshore surface waters (notably Urophycis regius, Mugil cephalus, Mullus auratus, Leiostomus xanthurus and unidentified sparid larvae) extend offshore and overlap with the ranges of Gulf Stream inhabitants, resulting in an area of increased variety over the middle shelf north of Cape Kennedy.

Except for the obvious inshore species such as Anchoa mitchilli and offshore species such as istiophorids and exocoetids, lines between inshore and offshore species are not clearly drawn. A more definite separation exists between those species occurring primarily in the Gulf Stream (*Histrio histrio*, and some flyingfishes) and those ranging over the continental shelf.

The average number of each species taken per successful tow (Table 2) indicates that most of the fishes caught had not yet begun to aggregate or at least occurred in such low densities that large catches were precluded. Schooling was apparent in very few species (i.e., anchovies, silversides, scads, and butterfish). Possibly the protective value of schooling (Breder 1967) is less necessary in surface waters where weed or debris are available for cover.

An area used as a nursery by developing fishes must provide a food source, protection from predation, and suitable hydrographic conditions. Both the Gulf Stream, with its floating mats of sargassum, and inshore bays and estuaries fulfill the first two requirements, but the two areas differ markedly in

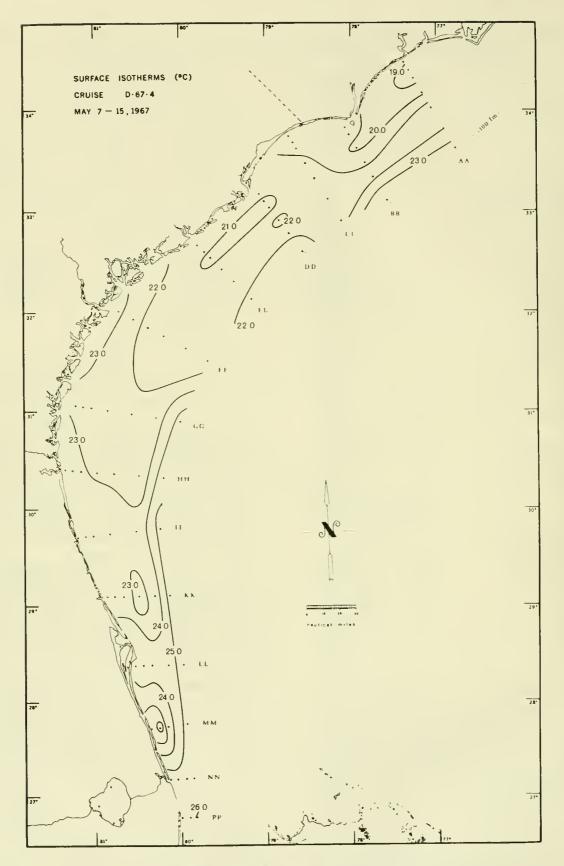


Figure 3.—Surface temperatures observed during spring, 1967.

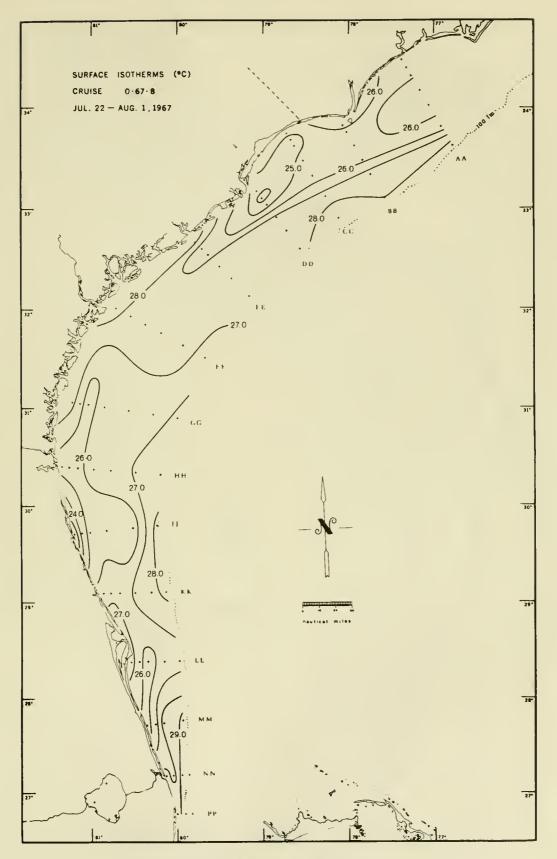
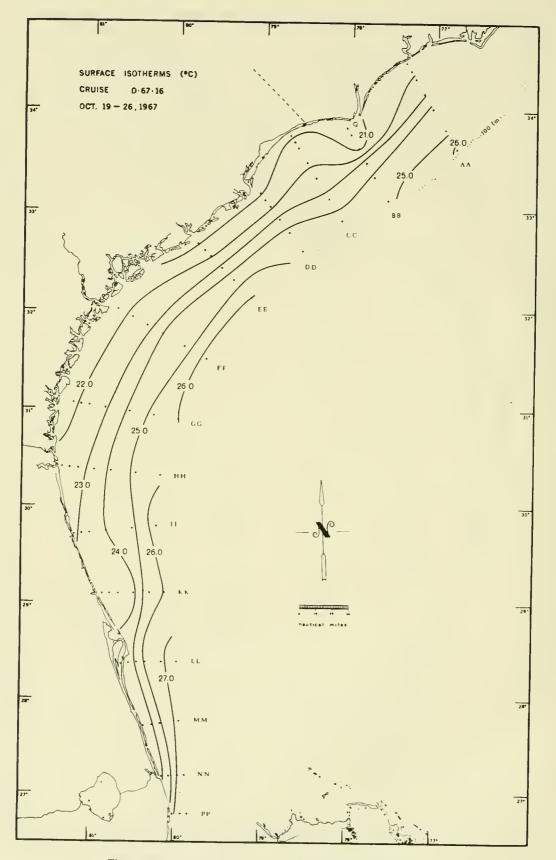



Figure 4.—Surface temperatures observed during summer, 1967.

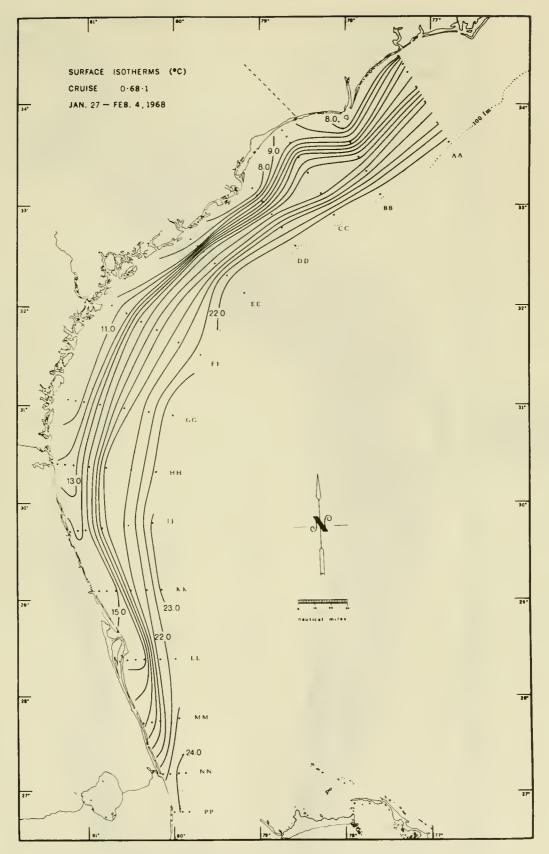


Figure 6.—Surface temperatures observed during winter, 1968.

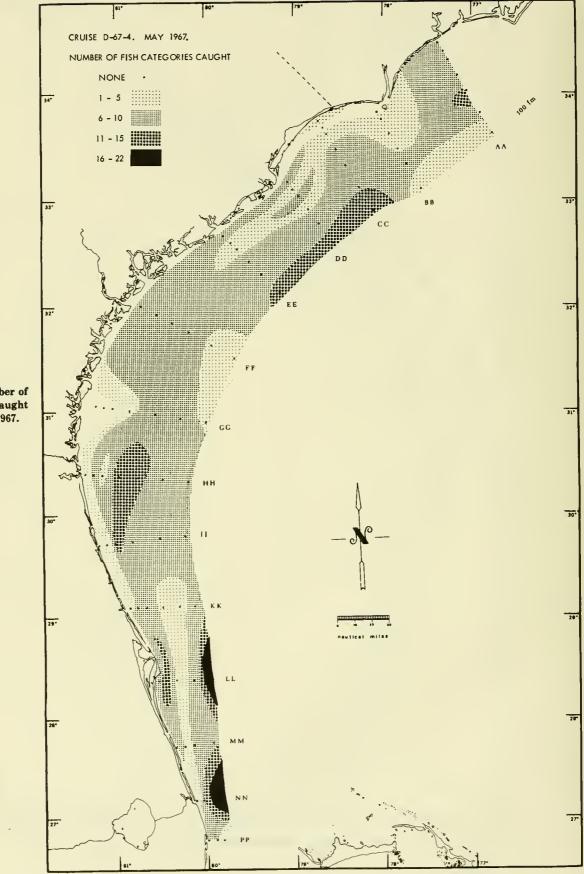
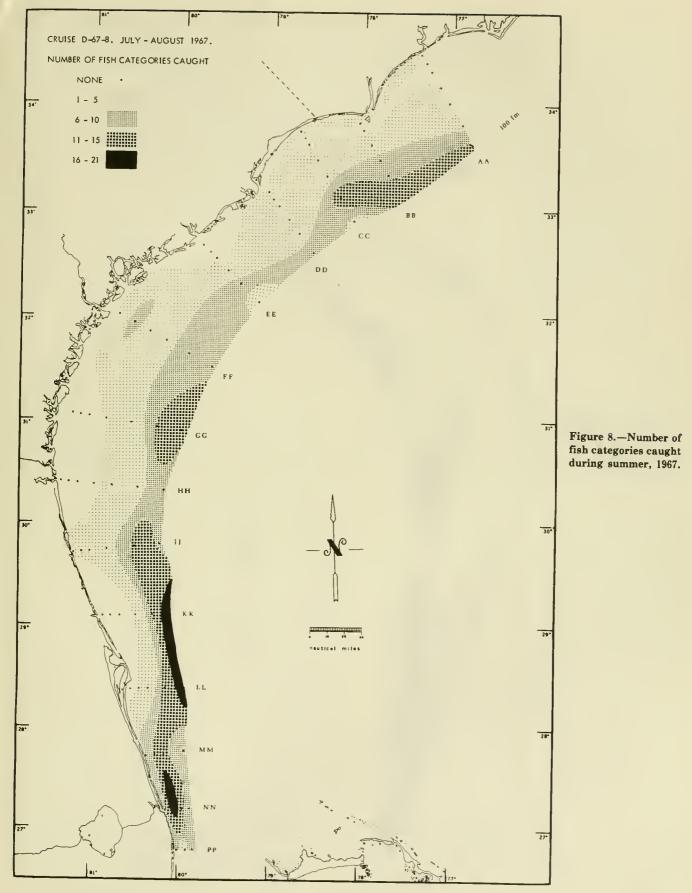
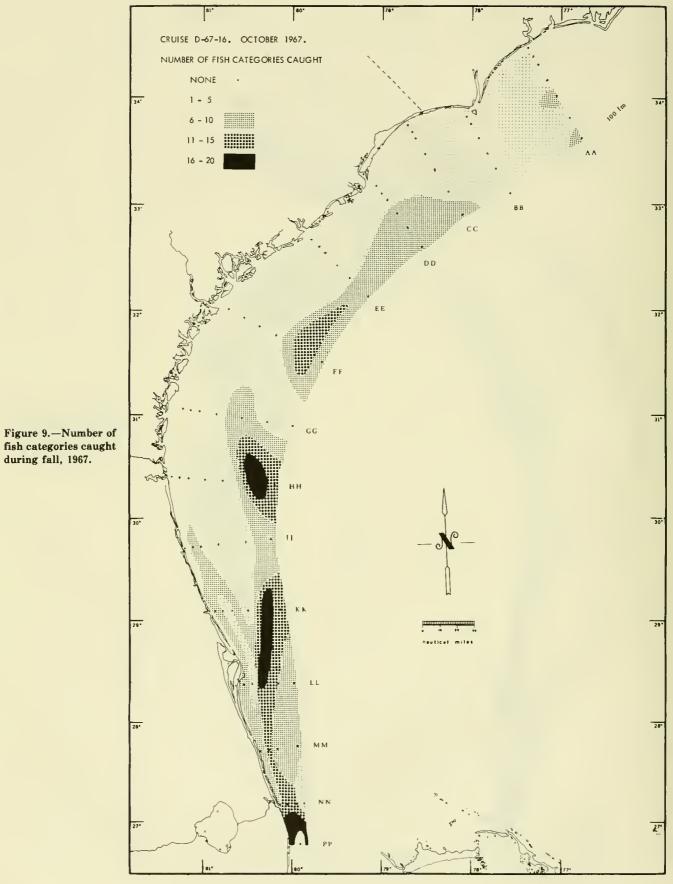
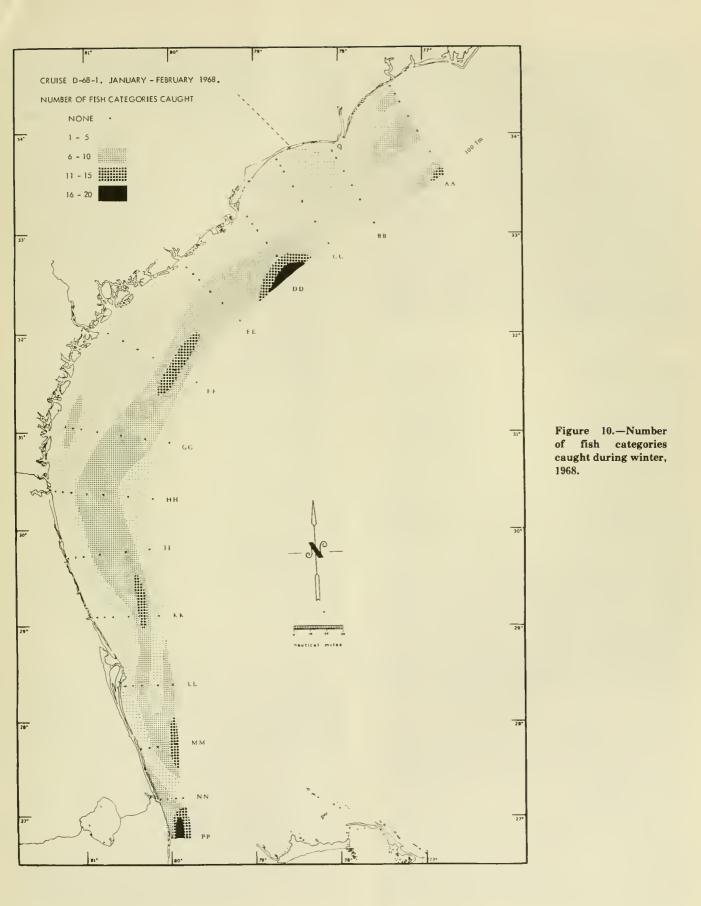





Figure 7.—Number of fish categories caught during spring, 1967.

hydrographic characteristics, especially temperature, and the differences are magnified during the winter. Those species which apparently spawn offshore and whose larvae migrate toward inshore nurseries as they grow do so in winter and spring when temperatures inshore and offshore differ greatly. Examples from our collections include *Elops saurus*, *Mugil* spp., *Leiostomus xanthurus*, *Brevoortia* sp., *Synodus* spp., *Urophycis regius*, *Trachinotus carolinus*, and *Scomberomorus maculatus*. Offshore spawning and inshore migration of larvae does not occur during summer and fall, when temperatures inshore more closely approximate those in the Gulf Stream.

It should be repeated that the data reported on here are the results of only one phase of the sampling done during the *Dolphin* surveys: the surface-towed meter net collections of larval and juvenile fishes. Not included are collections made by the Gulf V plankton samplers and subsurface juvenile fish hoops and midwater trawl.

ELOPIDAE

Elops saurus Linnaeus	HH-6, 2, 24.3-26.3
ladyfish	MM-3, 1, 29.9
D-67-4 May	D-68-1 Jan-Feb
AA-2, 1, 30.8	FF-1, 1, 34,3
D-67-8 Jul-Aug	GG-3, 1, 35.9
AA-7, 1, 28.5	HH-2, 1, 30,5
D-67-16 Oct	HH-3, 1, 36.6
EE-2, 1, 29.9	LL-1, 1, 26.8
GG-4, 1, 31.3	

Our catches of *Elops saurus* throughout the year do not necessarily indicate an extended spawning period, for it may be that 1) the fish we caught in winter are from the same group as those we caught in fall, 2) very little growth occurs during fall-winter, or 3) the larvae do not metamorphose and migrate into estuaries until spring warming occurs. Gehringer (1959) suggested much the same thing after examining his catches of early-, mid-, and late-metamorphic larvae. None of our specimens is in a metamorphic stage nor is any small enough to suggest point of origin. I believe that most spawning occurs offshore from spring through fall and that premetamorphic larvae (which we sampled) become more abundant over the shelf through those seasons, reaching a peak in the winter, followed by a mass migration of metamorphosing juveniles into the estuaries in the spring. It is consistent with this hypothesis that our subsurface samplers made several large catches of premetamorphic larvae (up to 346 individuals per station) during the fall and winter off Daytona Beach, Cape Kennedy, and Vero Beach (unpublished).

Eldred and Lyons (1966), mentioned a disparity in myomere numbers between most of their Florida specimens (with 74-77 myomeres) and most of Gehringer's (1959) specimens from the offing of Florida, Georgia, and North Carolina (with 78-81 myomeres). Myomere numbers in our North Carolina to Georgia specimens range from 75 to 78, and in our Florida specimens from 78 to 81. The significance of this is not understood, but interestingly, it is the reverse of the disparity mentioned above. Evidently the meristic characters differ geographically and vary from year to year, probably in response to different temperatures.

MURAENIDAE

Unidentified Leptocephali D-67-4 May AA-1, 1, 69.0 SL LL-5, 2, 42.3-64.5 SL D-67-8 Jul-Aug AA-6, 1, 63.0 SL DD-3, 1, 63.5 SL EE-4, 1, 77.5 SL FF-2, 1, 77.6 SL JJ-4, 1, 70.0 SL KK-5, 1, 61.5 SL LL-4, 1, 36.8 SL MM-1, 1, 67.0 SL MM-2, 8, 47.5-64.5 SL NN-1, 1, 24.5 SL D-67-16 Oct CC-5, 1, 70.5 SL EE-2, 2, 72.0-74.5 SL EE-3, 1, 70.0 SL HH-6, 3, 60.7-72.5 SL HH-7, 6, 55.5-72.0 SL

CONGRIDAE

Unidentified Leptocephali D-67-8 Jul-Aug NN-1, 1, 22.8 SL D-67-16 Oct FF-6, 1, 106.0 SL GG-4, 1, 53.5 SL LL-4, 2, 28.0-59.3 SL D-68-1 Jan-Feb EE-2, 1, 55.6 SL NN-4, 1, 82.3 SL

OPHICHTHIDAE

Unidentified Leptocephali D-67-4 May AA-3, 1, 75.8 SL GG-6, 1, 75.7 SL D-67-8 Jul-Aug DD-2, 2, 67,7-76,0 SL FF-2, 1, 70.8 SL D-67-16 Oct DD-2, 1, 84.8 SL GG-3, 3, 89.0-91.5 SL GG-4, 5, 81.0-97.6 SL HH-6, 16, 51.5-90.3 SL HH-7, 1, 75.6 SL JJ-6, 1, 73.4 SL LL-3, 1, 71.1 SL PP-3, 1, 75.2 SL D-68-1 Jan-Feb CC-4, 1, 50.7 SL DD-3, 1, 63.0 SL EE-1, 2, 57.4-57.8 SL EE-2, 4, 51.8-62.3 SL JJ-6, 1, 69.2 SL NN-1, 2, 63.5-78.0 SL Myrophis punctatus Lutken speckled worm eel D-68-1 Jan-Feb AA-2, 1, 327.0 Bascanichthys sp. D-68-1 Jan-Feb JJ-3, 1, 604.0 NEMICHTHYIDAE Unidentified Leptocephali D-67-4 May NN-2, 1, 77.0 SL D-68-1 Jan-Feb DD-6, 1, 91.2 NN-3, 1, 77.0

The surface-towed meter net apparently does not adequately sample leptocephalid larvae. The small numbers of leptocephali listed here do not reflect the many hundreds taken on the same stations by other gear (Gulf V plankton samplers or subsurface juvenile fish samplers). Only four of the eight families represented in our total leptocephalus collection were taken in the surface-towed net. The family Xenocongridae, which, according to Smith (1969) forms "a major constituent of the leptocephalus fauna in the western North Atlantic," is totally absent from our collections. We cannot account for this.

Böhlke and Chaplin (1968) reported that worm eels will approach a light hung near the surface. Our nighttime catches of adult ophichthids indicate that these fishes may forage near the surface at night and be present regardless of an artificial light source.

CLUPEIDAE

Brevoortia tyrannus (Latrobe) Atlantic menhaden DD-2, 1, 40.3 D-68-1 Jan-Feb D-67-8 Jul-Aug BB-1, 2, 24.0-27.5 DD-2, 7, 21.7-26.4 DD-1, 15, 20.9-23.9 DD-3, 25, 24.0-31.5 Brevoortia sp. MM-1, 1, 61.0 D-68-1 Jan-Feb D-67-16 Oct AA-4, 1, 21.0 LL-3, 1, 59.2 AA-5, 1, 18.6 BB-2, 1, 19.0 MM-2, 1, 54.4 MM-3. 1. 76.0 BB-3, 1, 18.7 D-68-1 Jan-Feb CC-6, 3, 25.4-29.9 DD-1, 5, 20.2-21.0 JJ-4, 2, 48.0-50.6 Unidentified EE-2, 4, 20.9-24.2 EE-4, 54, 17.9-26.2 D-67-4 May HH-1. 17. 14.7-20.1 AA-2, 4, 16.9-21.2 Etrumeus teres (DeKay) DD-4, 1, 19.0 round herring HH-6, 1, 12.0 D-68-1 Jan-Feb MM-3, 2, 16.6-18.6 D-67-8 Jul-Aug EE-1, 4, 20.0-23.6 FF-2, 35, 17.8-30.9 HH-5, 29, 17.4-18.4 GG-4, 31, 11.5-16.7 LL-4, 1, 131.5 Opisthonemo oglinum (Lesueur) GG-5, 9, 10.8-14.9 MM-2, 3, 18.1-20.1 Atlantic thread herring D-67-8 Jul-Aug D-67-16 Oct HH-4, 3, 23.0-25.5 DD-1, 1, 75.5 D-67-16 Oct HH-6, 2, 23.5-24.0 LL-1, 1, 105.2 D-68-1 Jan-Feb BB-1, 2, 15.6-20.0 LL-2, 1, 100.5 Sardinella onchovio Valenciennes DD-6, 2, 14.0-15.8 EE-5, 9, 13.3-23.0 Spanish sardine D-67-4 May EE-6, 6, 15.3-18.0 AA-1, 10, 19.1-27.5 FF-6, 2, 21.2-22.0

Larval Brevoortia tyrannus were identified on the basis of their dorsal ray and myomere counts. Brevoortia tyrannus has 18-24 dorsal rays (June 1958) and 45-50 vertebrae (Sutherland 1963). Those classified as Brevoortia sp. are specimens damaged to the extent that counts are not possible. Etrumeus teres larvae have relatively longer snouts than Brevoortia sp., few anal rays (9-12), and ventral fins located under the origin of the dorsal fin. Both dorsal and anal counts are high in Opisthonema oglinum (D: 20-22; A: 20-24). (The latter species spawns during the summer, Brevoortia sp. during the winter.) Harengula pensacolae and Sardinella anchovia share dorsal and anal ray counts, but S. anchovia has more myomeres (45-47) than H. pensacolae (40-42), and the posterior two anal rays are produced in S. anchovia larvae, at least in the sizes we encountered.

ENGRAULIDAE

Anchoa hepsetus (Linnaeus)	EE-3, 1, 21.5
striped anchovy	LL-1, 2, 28.9-29.9
D-67-4 May	MM-1, 6, 34.4-47.5
EE-1, 1, 58.0	<i>D-68-1</i> Jan-Feb
D-67-8 Jul-Aug	LL-3, 5, 52.3-56.3
JJ-1, 1, 42.6	Anchoa mitchilli (Valenciennes)
D-67-16 Oct	bay anchovy
BB-1, 83, 53.5-61.5	D-67-4 May
CC-4, 42, 19.5-35.0	DD-1, 1, 48.5
DD-2, 78, 18.5-27.4	EE-1, 1, 48.2

KK-1, 1, 34.5 D-68-1 Jan-Feb EE-1, 30, 42.0-56.8 Anchoa nasuta Hildebrand and Carvalho longnose anchovy D-67-8 Jul-Aug DD-1, 4, 41.3-44.8 D-67-16 Oct BB-1, 18, 42.6-53.0 LL-3, 11, 29.2-44.7 MM-2, 1, 39.8 D-68-1 Jan-Feb CC-4, 46, 46.3-63.0 FF-2. 1. 57.9 Anchoa sp. D-67-4 May AA-2, 9, 18.9-29.0 AA-4, 9, 14.5-26.6 AA-5, 1, 16.9 KK-2, 74, 9.9-28.8 LL-2, 4, 12.0-28.1 D-67-8 Jul-Aug CC-1, 2, 19.6-21.7 CC-3, 5, 54.7-58.0 D-67-16 Oct AA-3, 1, 18.3 CC-3, 3, 15.0-21.8 CC-6, 1, 24.0 D-68-1 Jan-Feb AA-2, 6, 20.9-22.0 AA-3, 7, 20.0-21.4 LL-5, 1, 25.6 Engraulis eurystole (Swain and Meek) silver anchovy D-68-1 Jan-Feb BB-4. 1. 35.9

Unidentified D-67-4 May AA-3, 2, 19.0-mut. BB-2, 2, 19.5-20.2 BB-4, 1, 17.9 CC-1, 1, 21.7 HH-2, 1, 17.4 HH-4, 5, 15.4-17.9 JJ-1, 7, 15.5-21.9 KK-1, 3, 22.5-29.5 LL-2, 2, 10.3-11.0 D-67-8 Jul-Aug BB-1, 1, 25.0 D-67-16 Oct CC-5, 11, 19.0-23.5 CC-6, 1, 19.2 DD-1, 1, 19.7-28.5 DD-4, 3, 19.0-23.1 DD-5, 5, 23.0-25.0 EE-2, 9, 19.9-25.7 LL-3, 4, 29.5-47.0 D-68-1 Jan-Feb AA-4, 2, 15.6-17.5 SYNODONTIDAE Synodus foetens (Linnaeus) inshore lizardfish D-67-4 May DD-2, 2, 24.0-28.0 DD-4, 2, 16.0-19.5 FF-2, 2, 23.0-25.7 D-68-1 Jan-Feb JJ-5, 1, 16.9 Unidentified D-68-1 Jan-Feb JJ-4, 1, mut. MM-4, 1, 22.8

The synodontids are characterized by wide variation in vertebral numbers between the species (Miller and Jorgenson 1973) with Synodus foetens having the highest count (56-61). All those specimens here identified as S. foetens have myomere counts of 60 (\pm 1). Pigment patterns on the unidentified synodontids are not sufficient to identify them since the patterns are intermediate between those described by Anderson et al. (1966).

MYCTOPHIDAE

Unidentified	GG-5, 1, 40.0
D-67-16 Oct	HH-3, 1, 26.5
PP-3, 2, 17.9-mut.	HH-7, 4, 10.5-29.0
D-68-1 Jan-Feb	KK-5, 1, 13.0
FF-5, 1, mut.	KK-6, 1, 13.0
GG-6, 1, 16.9	LL-5, 1, 14.0
PP-2, 6, mut17.3	MM-4, 3, 11.0-20.0
ANTENNARIIDAE	NN-2, 1, 20.0 NN-3, 2, 10.0-14.0
Histrio histrio (Linnaeus)	NN-4, 7, 10.0-18.0
sargassumfish	PP-1, 1, 9.5
D-67-4 May	PP-2, 3, 10.5-24.0
DD-6, 3, 17.0-92.0	D-67-8 Jul-Aug
EE-6, 1, 31.0	KK-5, 2, 10.0-15.0

MM-2, 1, 15.0	KK-6, 1, 22.0
NN-4, 1, 11.0	LL-3, 1, 35.0
PP-1, 1, 14.0	MM-1, 1, 69.5
D-67-16 Oct	PP-1, 1, 21.0
AA-7, 1, 12.0	D-68-1 Jan-Feb
CC-7, 1, 11.0	LL-5, 2, mut.
EE-6, 1, 14.5	MM-3, 2, 14.0-17.0
HH-6, 1, 23.0	PP-2, 1, mut.

Adams (1960) concluded that "Histrio spawns yearround in the Florida Current area with a possible midwinter interruption of reproductive activity." Dooley (1972) found an increase in the mean size of Histrio from April through September followed by a sudden influx of 6 to 15 mm individuals in October and suggested that "spawning occurred at least from late August through April." Our own data do not settle this disparity. We caught small specimens during all four cruises but not in numbers large enough to construct significant length-frequency curves.

GADIDAE

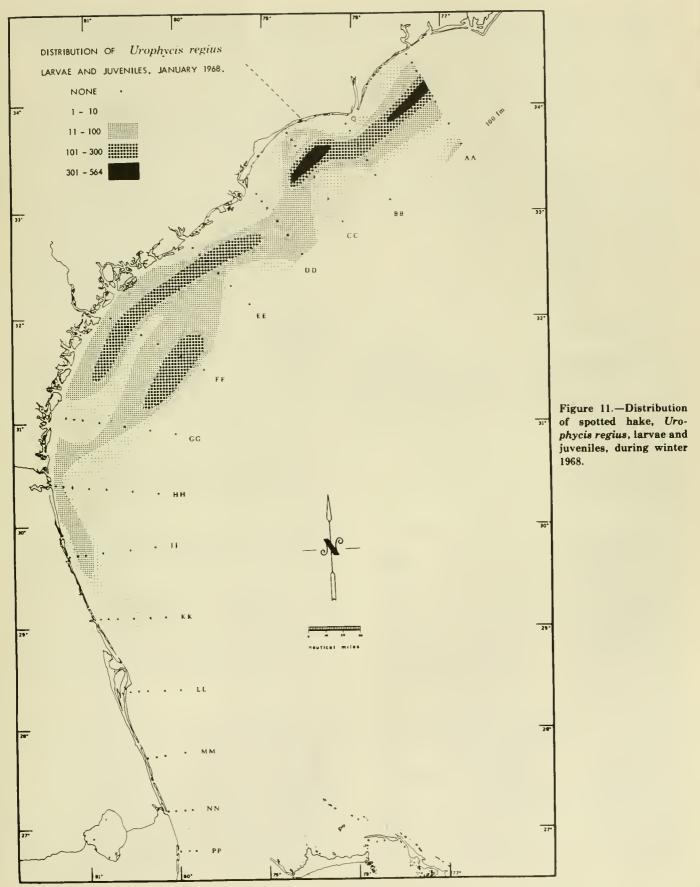
Urophycis earlii (Bean)	CC-2, 21, 24,0-31.0 TL
Carolina hake	CC-3, 1, 26.0 TL
D-68-1 Jan-Feb	CC-4, 469, 23.0-65.0 TL
FF-3, 1, 25.0 TL	CC-5, 8, 19.0-30.0 TL
KK-3, 1, 25.0 TL	CC-6, 8, 20.0-29.0 TL
Urophycis floridanus	DD-2, 5, 15.0-26.0 TL
(Bean and Dresel)	DD-3, 7, 22.0-37.0 TL
southern hake	DD-4, 30, 9.0-20.0 TL
<i>D-68-1</i> Jan-Feb	DD-5, 59, 9.0-17.0 TL
AA-5, 2, 12.0-30.0 TL	DD-6, 19, 8.0-27.0 TL
BB-3, 1, 60.0 TL	EE-2, 24, 32.0-54.0 TL
FF-5, 4, 15.0-40.0 TL	EE-3, 180, 26.0-64.0 TL
HH-4, 3, 21.0-37.0 TL	EE-4, 23, 14.0-27.0 TL
HH-5, 3, 43.8-70.0 TL	FF-1, 81, 32.0-67.0 TL
JJ-4, 1, 25.0 TL	FF-2, 163, 27.0-54.0 TL
LL-5, 1, 51.0 TL	FF-3, 2, 24.0-32.0 TL
Urophycis regius (Walbaum)	FF-4, 23, 20.0-31.0 TL
spotted hake	FF-5, 248, 9.0-25.0 TL
D-67-4 May	GG-1, 7, 27.0-32.0 TL
CC-4, 1, 20.0 TL	GG-2, 6, 25.0-30.0 TL
DD-1, 2, 57.0-57.0 TL	GG-3, 4, 29.0-41.0 TL
DD-2, 2, 35.0-58.0 TL	GG-4, 3, 27.0-31.0 TL
EE-2, 1, 69.0 TL	GG-5, 94, 8.0-21.0 TL
EE-3, 2, 55.5-126.0 TL	HH-1, 40, 25.0-34.0 TL
HH-4, 1, 26.0 TL	HH-2, 7, 20.0-31.0 TL
<i>D-6</i> 8-1 Jan-Feb	HH-3, 1, 24.0 TL
AA-1, 8, 38.0-40.0 TL	HH-5, 1, 25.0 TL
AA-2, 69, 27.0-58.0 TL	JJ-2, 42, 20.0-49.0 TL
AA-3, 60, 20.0-36.0 TL	JJ-3, 18, 21.0-43.0 TL
AA-4, 564, 9.0-28.0 TL	KK-4, 3, 14.0-16.0 TL
AA-5, 17, 9.0-18.0 TL	KK-5, 1, 24.0 TL
AA-7, 17, 11.0-23.0 TL	Urophycis sp.
BB-3, 268, 16.0-76.0 TL	D-67-4 May
BB-4, 60, 24.0-51.0 TL	CC-7, 1, 7.5 TL
CC-1, 8, 23.0-31.0 TL	FF-5, 4, 15.0-20.0 TL

Urophycis regius juveniles were the most numerous of all species caught in the South Atlantic Bight. Spawning evidently begins in late fall or early winter and extends into spring, when adults of this species occupy inshore waters (Anderson 1968, p. 54). The resulting juveniles are then widely distributed in surface waters at least from New River, N.C., to Daytona Beach, Fla. (Fig. 11), with a center of abundance near Cape Fear, N.C. We caught no juvenile *Urophycis* sp. south of Cape Kennedy. That point probably marks the approximate southern limit to this genus' abundance and spawning range.

Juvenile U. regius evidently occupy the surface layers until they reach about 75 mm, judging from our catches. They are found in as wide a range of temperatures as the South Atlantic Bight offers during the winter (Fig. 12) but mostly in temperatures between 10° and 15°C. Catches in relatively warm water on the offshore ends of transects DD and FF account for the second peak in Figure 12.

OPHIDIIDAE LL-5, 1, 26.3 NN-3, 2, 23.7-29.4 Unidentified PP-1, 1, 17.4 D-67-4 May PP-3, 1, 57.7 EE-6, 1, 35.0 D-67-16 Oct D-67-16 Oct BB-4, 1, 47.0 HH-6, 1, 61.0 CC-6, 1, 93.8 HH-7, 1, 28.0 DD-5, 2, 20.0-38.6 EXOCOETIDAE EE-6, 3, 36.0-46.2 FF-4, 1, 18.0 Chriodorus atherinoides Goode and Bean FF-5, 2, 20.6-23.8 hardhead halfbeak GG-5, 4, 19.8-41.9 GG-7, 1, 22.9 D-68-1 Jan-Feb HH-3, 2, 27.0-35.0 EE-3, 1, 78.2 HH-4, 2, 36.5-39.5 Cypselurus cyanopterus (Valenciennes) JJ-2, 4, 19.7-25.8 margined flyingfish KK-1, 4, 21.5-36.5 D-67-16 Oct KK-5, 1, 29.0 KK-6, 1, 54.5 KK-5,1, 46.5 LL-4, 1, 25.0 Cypselurus exsiliens (Linnaeus) bandwing flyingfish LL-5, 1, 22.1 D-67-16 Oct NN-2, 1, 38.8 PP-1, 2, 31.6-49.6 KK-6, 1, 52.0 Cypselurus furcatus (Mitchill) D-68-1 Jan-Feb DD-6, 1, 27.2 spotfin flyingfish D-67-4 May JJ-4, 2, 29.7-54.2 LL-5, 1, 26.5 JJ-5, 1, 89.6 PP-2, 1, 55.0 Cypselurus heterurus PP-3, 1, 28.5 (Rafinesque) Atlantic flyingfish Cypselurus sp. D-67-4 May D-67-16 Oct AA-6, 2, 19.0-21.9 NN-2, 1, 34.9 BB-5, 2, 58,7-62.8 Euleptorhamphus velox Poey CC-7, 1, 19.5 flying halfbeak DD-6, 1, 21.5 D-67-16 Oct HH-4, 1, 16.4 FF-6, 1, 37.9 HH-7, 1, 35.5 Exocoetus obtusirostris Gunther JJ-5, 1, 217.0 oceanic two-wing flyingfish JJ-6, 1, 38.6 D-67-4 May LL-5, 2, 16.0-22.5 LL-5, 4, 40.0-66.5 NN-3, 1, 13.9 D-68-1 Jan-Feb NN-4, 2, 16.5-21.0 PP-1, 1, 13.4 D-67-8 Jul-Aug PP-2, 12, 9.9-21.0 PP-3, 6, 10.8-20.0

Exocoetus volitans Linnaeus


tropical two-wing flyingfish

D-67-4 May

LL-5, 1, 28.0

NN-3, 1, 21.0

AA-5, 1, 122.5 AA-7, 4, 18.7-28.5 DD-6, 2, 21.8-34.6 GG-7, 1, 30.5 HH-7, 4, 26,1-62,5 JJ-6, 1, 19.9

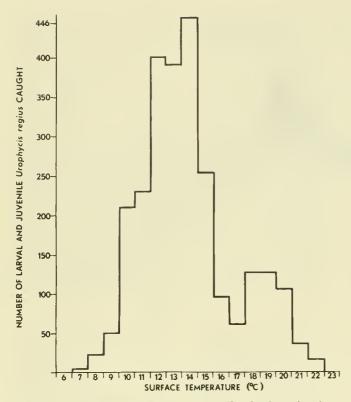


Figure 12.—Abundance of spotted hake, Urophycis regius, larvae and juveniles, relative to observed surface temperatures during winter 1968.

D-68-1 Jan-Feb NN-3, 1, 30.3 Hemiramphus brasiliensis (Linnaeus) ballyhoo D-67-4 May DD-2, 2, 50.5-51.2 DD-3, 1, 49.0 DD-6, 3, 35.9-51.6 EE-1, 1, 77.0 EE-3, 1, 47.4 LL-1, 1, 40.4 NN-3, 3, 18.5-22.2 D-67-8 Jul-Aug AA-7, 2, 23.0-43.8 FF-2, 3, 159.0-167.0 GG-6, 1, 29.7 HH-7, 3, 26.0-75.5 LL-4, 2, 25.0-34.4 MM-3, 2, 33.6-36.8 NN-3, 1, 32.7 D-67-16 Oct AA-6, 1, 57.3 EE-2, 1, 166.0 GG-7, 2, 30.6-31.8 JJ-6, 2, 58.5-68.5 KK-1, 2, 30.9-36.8 KK-5, 5, 23.5-37.9 KK-6, 4, 28.8-78.2 LL-3, 8, 34.0-127.0 LL-4, 1, 25.3 LL-5, 1, 28.0

NN-2, 2, 12.8-14.9 PP-1, 3, 23.0-54.2 PP-3, 1, 40.0 D-68-1 Jan-Feb JJ-5, 1, 80.4 LL-5, 1, 46.0 MM-3, 2, 34.0-67.2 PP-2, 1, 15.1 Hirundichthys affinis (Gunther) tourwing flyingfish D-67-4 May NN-3, 1, 17.0 D-68-1 Jan-Feb PP-2, 1, 9.9 Hirundichthys rondeleti (Valenciennes) blackwing flyingfish D-67-4 May HH-7, 1, 21.0 JJ-6, 1, 20.5 MM-4, 1, 24.5 NN-4, 3, 18.0-23.0 D-67-8 Jul-Aug LL-5, 1, 19.0 Hyporhamphus unifasciatus (Ranzani) halfbeak D-67-4 May EE-1, 1, 132.0 LL-3, 1, 43.4 D-67-8 Jul-Aug

GG-7, 1, 23.0

LL-4, 2, 24.2-28.5 D-67-16 Oct LL-1, 8, 71.0-185.0 LL-2, 4, 95.0-105.5 LL-3. 2. 58.0-62.0 MM-1, 2, 71.4-102.4 MM-2, 2, 64.2-77.5 D-68-1 Jan-Feb HH-4, 1, 81.3 HH-5, 1, 73.9 LL-2, 8, 104.2-132.0 LL-3, 66.0-146.0 Oxyporhamphus micropterus (Valenciennes) smallwing flyingfish D-67-8 Jul-Aug BB-4, 3, 12.5-14.0 D-67-16 Oct AA-5, 1, 15.0 DD-4, 1, 14.5 Parexocoetus brachypterus (Richardson) sailfin flyingfish D-67-4 May KK-5, 2, 122.0-123.2 LL-5, 1, 22.0 MM-4, 2, 25.0-32.2 D-67-8 Jul-Aug AA-5, 10, 21.9-122.5 AA-7, 2, 17.8-59.1 EE-5, 2, 20.5-27.4 FF-4, 3, 10.4-17.7 GG-6. 1. 26.3 GG-7, 3, 13.0-55.0 JJ-3, 1, 108.6 KK-5, 1, 58.9 KK-6, 5, 18.4-133.2 MM-2, 1, 56.6 D-67-16 Oct AA-2, 1, 27.4 BB-4, 3, 18.0-23.5 BB-5, 1, 23.5 CC-4, 2, 25.6-26.5 CC-5, 6, 27.6-35.2 CC-6, 8, 21.0-59.0 DD-5, 6, 6.1-38.6 DD-6, 3, 13,6-24,3 EE-5. 1. 29.2 EE-6, 2, 14.2-20,0 GG-3, 1, 26.6 GG-4, 2, 17.7-23.8 HH-2, 5, 16.9-35.4 HH-3, 9, 16.0-30.5 HH-4, 1, 23.0 HH-6, 1, 125.9 HH-7, 1, 122.6 JJ-1, 1, 34.0 JJ-2, 1, 20.5 KK-1, 1, 28.0 KK-2, 2, 24.7-28.6 KK-3, 1, 21.6 KK-4, 2, 51.8-59.7 KK-5, 20, 33.0-136.0 KK-6, 24, 22.5-50.5

MM-1, 2, 30.8-30.8 MM-2, 2, 22.3-39.9 MM-4, 4, 19.5-29.1 PP-2, 2, 27.4-41.1 PP-3, 4, 18.3-37.8 Prognichthys gibbifrons (Valenciennes) hluntnose flyingfish D-67-4 May DD-5, 1, 26.4 DD-6, 1, 28.9 FF-6, 1, 25.5 HH-6. 1. 30.6 HH-7, 3, 18.7-30.0 JJ-3, 1, 29.4 JJ-6, 2, 15.7-22.0 LL-5, 2, 15.5-mut. MM-3, 2, 22.0-23.7 NN-2, 2, 20.8-21.7 NN-3, 5, 13.9-23.9 NN-4, 7, 14.4-25.4 PP-2, 2, 15.9-18.5 D-67-8 Jul-Aug AA-6, 1, 41.5 AA-7, 2, 17.8-37.0 BB-4, 2, 15.0-24.5 BB-5, 2, 16.3-22.4 EE-6, 1, 19.1 FF-6, 2, 17.2-24.9 GG-6, 1, 16.0 JJ-6. 1. 23.0 KK-5, 1, 10.9 KK-6, 1, 36.0 LL-5, 3, 15.2-17.5 MM-1, 1, 17.1 MM-3, 1, 8.0 NN-2, 1, 19.3 D-67-16 Oct EE-5, 1, 18.6 FF-5, 1, 21.0 FF-6, 1, 24.0 KK-5, 1, 15.0 KK-6, 1, 24.0 LL-4, 1, 50.9 MM-2, 1, 22.3 NN-3, 1, 20.2 D-68-1 Jan-Feb DD-6, 1, 20.8 NN-2, 1, 50.0 NN-4, 4, 34.3-64.5 PP-2, 1, 21.5 Unidentified D-67-4 May CC-5, 1, mut. CC-7, 2, 12.9-19.5 DD-6, 1, mut. KK-6, 1, 22.2 NN-4, 1, mut. D-67-8 Jul-Aug GG-6, 1, 15.3 JJ-5, 2, 10.9-15.6 MM-2, 1, 15.0 D-68-1 Jan-Feb MM-4, 1, 15.0

LL-3, 11, 28.0-80.0

Using information from Bruun (1935), Breder (1938), Staiger (1965), Blache et al. (1970), and Miller

and Jorgenson (1973), the following key was constructed and used for identifying juvenile flyingfishes:

Key to Juvenile Flyingfishes

1	(2).	Pectoral fins short, not reaching origin of dorsal fin Oxyporhamphus micropterus
2	(2). (1).	
3		Pelvic fins short, less than 21% of SL
4	(3).	Pelvic fins long, greater than 25% of SL
5		Pectoral fins ca. 70% of SL; 13-14 dorsal rays; dorsal fin not extending to
0	(0).	caudal base
6	(7).	19-21 gill rakers on lower limb of first gill arch Exocoetus obtusirostris
7	(6).	
8	(5).	Pectoral fins ca. 60% of SL or less; 10-13 dorsal rays; dorsal fin extends
	. ,	beyond caudal base
9	(20).	More dorsal rays (12-16) than anal rays (8-12)
10	(11).	Second pectoral ray simple
11	(10).	Second pectoral ray branched
12	(13).	Dorsal fin (at least partly) black
13	(12).	Dorsal fin uniformly gray
14	(15).	Less than 30 predorsal scales; 15 dorsal rays; mandibular barbels flap-
		like, shorter than 46% of standard length
15	(14).	More than 30 predorsal scales; 12-13 dorsal rays; mandibular barbels
		cylindrical, very long, reaching past origin of dorsal fin Cypselurus cyanopterus
		Palatine teeth visible; 12 dorsal rays; 42 vertebrae (26-27 precaudal) Cypselurus comatus
		No palatine teeth; 13-14 dorsal rays; 45-47 vertebrae (29-31 precaudal) 18
18	(19).	First pectoral ray longer than 38% of standard length; 29-33 total caudal
	(1.0)	rays
19	(18).	First pectoral ray shorter than 38% of standard length; 26-29 total caudal
00	(0)	rays
		More anal rays (11-13) than dorsal rays (10-12)
		Second pectoral ray simple; 12 dorsal rays
22	(21).	Second pectoral ray branched; 10-11 dorsal rays Hirundichthys affinis

Of the three species of flyingfishes most commonly taken, only *Parexocoetus brachypterus* demonstrates marked seasonality in size of fish and numbers taken (Table 3).

The halfbeaks *Hemiramphus brasiliensis* and *Hyporhamphus unifasciatus* were both more numerous and larger in night tows than in day tows (Table 4), attesting either to the ability of these fast-moving predators to avoid the net during daylight or to the fact that they avoid surface waters during the day and actively feed there primarily at night.

Table 3.—Numbe	r caught and	length range	(mm FL) of speci-
mens less than	100.0 mm for	three species	of flyingfishes.

	Cypselurus heterurus		Parexocoetus brachypterus		Prognichthys gibbifrons	
	N	Length range	N	Length range	N	Length range
May	16	13.9-66.5	3	22.0-32.2	30	13.9-30.6
Jul-Aug	17	17.4-62.5	- 26	10.4-59.1	20	8.0-41.5
Oct	34	18.0-93.8	127	6.1-80.0	8	15.0-50.9
Jan-Feb	6	27.2-89.6	—	<u> </u>	7	20.8-64.5

BELONIDAE

Tylosurus acus Lacepede	Membras martinica
agujon	(Valenciennes)
D-67-4 May	rough silverside
MM-2, 1, 206.0	<i>D-67-16</i> Oct
D-67-8 Jul-Aug	BB-1, 41, 29.9-51.4
GG-7, 1, 197.0	FF-1, 25, 66.0-80.6
D-67-16 Oct	<i>D-68-1</i> Jan-Feb
PP-1, 1, 208.0	EE-1, 1, 63.2
Tylosurus sp.	LL-1, 5, 71.0-76.0
D-67-16 Oct	/ LL-2, 72, 73.8-107.8
KK-5, 1, 35.5	

ATHERINIDAE

.8

Table 4.—Diel occurrences and maximum sizes of two species of halfbeaks.

		Hemiramphus brasiliensis		Hyporhamphus unifasciatus	
	N	Maximum Size	N	Maximum Size	
Day	14	67.2	1	43.4	
Dusk	14	127.0	2	62.0	
Night	30	167.0	34	185.0	
Dawn	6	51.6	3	81.3	

Menidia menidia (Linnaeus)	D-68-1 Jan-Feb
Atlantic silverside	BB-1, 1, 67.3
D-67-16 Oct	BB-2, 4, 74.3-107.8
EE-1, 4, 66.1-80.4	DD-1, 1, 59.8
MM-3, 1, 26.0	LL-1, 12, 71.4-93.2
	LL-2, 18, 81,0-105,0

The catch of 25 Membras martinica at station FF-1 in October is a subsample of 496 atherinids. The remaining fish were discarded at sea and are not included here.

HOLOCENTRIDAE

Holocentrus sp.	GG-7, 2, 10.2-12.4
D-67-4 May	KK-6, 2, 6.9-9.9
LL-5, 4, 9.0-11.2	MM-4, 1, 13.2
MM-4, 1, 13.0	D-67-16 Oct
D-67-8 Jul-Aug	HH-6, 1, 16.7
FF-5, 1, 12.5	MM-4, 1, 15.1
GG-6, 1, 13.2	PP-3, 2, 11.8-12.9

Although we only took 16 holocentrids, and these are not specifically identified, one comparison may be made with the study of *Holocentrus vexillarius* by McKenney (1959). McKenney caught specimens from 5.8 to 24.9 mm only at dusk or night. All our catches were also made in periods of twilight or night, never during the day. Evidently these nocturnal fishes begin their avoidance of light at an early age. The depth to which they descend during daylight is unknown.

SYNGNATHIDAE

Amphelikturus dendriticus	
(Barbour)	GG-6, 1, 26.3
pipehorse	NN-2, 2, 22,4-39,5
D-68-1 Jan-Feb	Syngnathus elucens Poey
KK-5, 1, 16.4	shortfin pipefish
Hippocampus erectus Perry lined seahorse	D-67-4 May
	FF-3, 1, 117.4
D-67-4 May	D-68-1 Jan-Feb
FF-5, 2, 17.5-18.5	JJ-5, 1, 118.0
JJ-3, 1, 23.0	Syngnathus fuscus Storer
JJ-6, 1, 14.7	northern pipefish
D-67-8 Jul-Aug	D-68-1 Jan-Feb
CC-3, 1, 23.9	LL-1, 1, 65.0
JJ-2, 1, 11.3	Syngnathus pelagicus Linnaeus
D-67-16 Oct	sargassum pipefish
AA-2, 1, 15.8	D-67-4 May
CC-2, 1, 16.8	DD-6, 1, 132.9
JJ-3, 1, 28.0	D-67-8 Jul-Aug
KK-2, 2, 15.2-28.3	KK-5, 1, 131.2
<i>D-68-1</i> Jan-Feb	MM-3, 1, 85.5
KK-5, 2, 16.4-30.0	D-67-16 Oct
MM-4, 1, 19.9	LL-3, 1, 103.9
Hippocampus sp.	NN-2, 1, 109.6
D-67-4 May	PP-1, 1, 117.6
CC-7, 1, 31.4	PP-3, 1, 79.8
PP-1, 1, 22.5	D-68-1 Jan-Feb
D-67-8 Jul-Aug	HH-4, 1, 83.8
CC-6, 1, 13.4	MM-3, 1, 141.0
<i>D-68-1</i> Jan-Feb	Syngnothus springeri Herald
AA-7, 1, 33.1	bull pipefish
DD-6, 1, 30.2	D-67-4 May
EE-5, 1, 18.1	AA-2, 1, 66.7

CC-4, 1, 45.3 GG-4, 1, 63.0 JJ-3, 1, 61.0 HH-4, 1, 62.3 LL-2. 1. 59.0 KK-5, 2, 64.0-69.1 D-68-1 Jan-Feb LL-3, 1, 71.9 FF-2, 2, 77.9-80.0 Syngnathus sp. FF-5, 1, 60.0 D-67-16 Oct KK-5, 2, 90.6-124.0

The pipehorse, Amphelikturus dendriticus, is rarely caught and is known only from the Bahamas and Bermuda (Böhlke and Chaplin 1968). The presence of the young specimen in shelf waters off Florida indicates that the Gulf Stream may affect to some extent the dispersal of its progeny.

The capture of the northern pipefish, Syngnathus fuscus, at Cape Kennedy represents a range extension of about 85 miles beyond its previously reported southern limit at St. Augustine (Briggs 1958).

Syngnathids were present the year-round in our collections, but during the winter most occurrences were restricted to waters with temperatures above 20°C. Syngnathus springeri, however, was caught during the winter at temperatures as low as 10.4°C. Evidently, this coastal species tolerates lower temperatures than more pelagic species of pipefishes.

PRIACANTHIDAE

Pristigenys alta (Gill)	
short bigeye	GG-6, 12, 8.0-11.4
D-67-8 Jul-Aug	GG-7, 4, 8.6-11.4
BB-4, 1, 10.8	JJ-5, 1, 10.3
BB-5, 1, 18.2	KK-6, 3, 10.7-13.0
CC-6, 5, 10.0-18.8	LL-5, 1, 9.6
FF-4, 4, 9.5-14.6	MM-3, 2, 8.4-10.8
FF-5, 2, 10.3-15.4	NN-2, 8, 6.2-11.9

The short bigeye spawns from early July to mid-September, at the latest (D. K. Caldwell 1962), and drifts at the surface before metamorphosing and assuming a demersal existence. The fact that we took no specimens during the October cruise indicates that the premetamorphic pelagic stage lasts less than 2 mo.

APOGONIDAE

	Apogon sp.
	D-67-4 May
Apogon maculatus (Poey)	LL-2, 1, mut.
flamefish	Astrapogon sp.
D-67-8 Jul-Aug	D-68-1 Jan-Feb
BB-5, 1, 22.0	NN-1, 2, 12.9-14.5

Because most meristic characters are shared by western Atlantic apogonids, color patterns are important in identifying species. The postlarva here identified as Apogon maculatus (Fig. 13) has acquired the pattern characteristic of adults: a band of pigment posterior to the eye and across the opercle, a spot on the body under the second dorsal fin, and a saddle of pigment on both sides and top of the caudal peduncle.

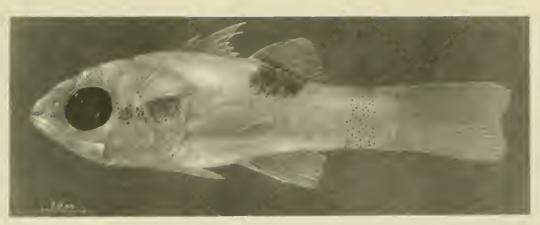


Figure 13.-Postlarval Apogon maculatus, 22.0 mm FL.

POMATOMIDAE

Pomatomus saltatrix (Linnaeus)	CC-6, 1, 25.1
bluefish	FF-1, 1, 29.4
D-67-4 May	HH-4, 2, 20.7-28.9
AA-1, 2, 32.0-33.5	HH-5, 1, 17.7
AA-5, 2, 18.5-24.0	JJ-3, 1, 25.4
BB-2, 1, 23.5	JJ-4, 1, 18.5
CC-1, 1, 30.8	LL-3, 1, 18.0

Little is known of the life history of the bluefish south of Cape Hatteras. Our catches indicate spawning occurs in the entire area at least as far south as Cape Kennedy and is restricted to the spring. At the same time the sport fishery catch consisting of small fish (ca. 1.5 lbs) in the Cape Kennedy area reaches a peak (Anderson and Gehringer 1965). It is not known whether the parents of the postlarvae we caught are these 1-yr old fish or an offshore group of older and larger fish. It is known, however, that 1-yr old fish with running ripe gonads are caught off Florida (David G. Deuel, National Marine Fisheries Service, Narragansett, R.I., pers. commun.) and are thus capable of spawning.

ECHENEIDAE

Remora remora (Linnaeus) remora D-67-8 Jul-Aug NN-4, 2, 25.3-32.0

CARANGIDAE

Caranx bartholomaei Cuvier yellow jack D-67-4 May MM-2, 1, 23.2 NN-2, 1, 23.9 NN-4, 1, 76.0 D-67-8 Jul-Aug BB-5, 4, 13.8-19.1 EE-5, 1, 65.4 LL-5, 1, 34.2 MM-4, 1, 59.0 PP-2, 1, 38.9 D-67-16 Oct KK-5, 2, 48.2-55.9

LL-3, 1, 50.7 PP-1, 1, 56.6 PP-3, 1, 21.3 D-68-1 Jan-Feb MM-3, 1, 26.1 PP-1, 1, 11.5 PP-2, 1, 11.0 Caranx fusus (Mitchill) blue runner D-67-4 May NN-2, 1, 15.5 NN-4, 3, 11.0-16.5 D-67-8 Jul-Aug BB-6, 1, 22.4 CC-6, 4, 13.0-27.8 FF-5, 9, 12.0-22.7 FF-6, 1, 11.6 GG-6, 2, 8.5-11.3 HH-7, 1, 19.7

JJ-5, 2, 16.7-28.4 KK-6, 12, 8.4-40.0 LL-5, 5, 10.0-19.3 NN-2, 4, 13.1-24.4 NN-3, 2, 10.6-52.0 D-67-16 Oct EE-6, 1, 11.5 JJ-5, 1, 25.8 MM-2, 1, 46.3 MM-3, 1, 17.1 MM-4, 1, 26.9 PP-3, 6, 38.2-49.4 D-68-1 Jan-Feb PP-3, 1, 13.0 Caranx hippos (Linnaeus) crevalle jack D-67-4 May NN-2, 3, 17.7-22.5 NN-3, 1, 13.6 D-67-8 Jul-Aug LL-5, 1, 12.2 Caranx latus Agassiz horse-eye jack D-67-4 May NN-4, 1, 11.4 D-67-8 Jul-Aug NN-3, 1, 18.7 Coranx ruber (Bloch) bar jack D-67-4 May EE-6, 1, 14.9 GG-7, 1, 62.1 JJ-5, 1, 16.3 NN-3, 2, 13.7-15.0 D-67-8 Jul-Aug BB-6, 1, 27.9 JJ-6, 6, 45.0-71.5 KK-5, 5, 37,3-44.1 KK-6, 1, 35.0 LL-5, 4, 40.2-59.2 MM-4, 4, 35.0-37.5 NN-4, 1, 40.5 PP-1, 1, 48.6 PP-2, 3, 14.1-40.7 PP-3, 14, 20.7-68.4 D-67-16 Oct KK-4, 1, 73.9

KK-5, 5, 28.5-62.7 LL-3, 2, 41.0-66.7 LL-5, 1, 59.9 MM-3, 1, 52.9 NN-3, 1, 44.9 PP-1, 1, 38.3 PP-3, 2, 29.8-39.1 Caranx sp. D-67-4 May NN-2, 2, 12.7-13.8* D-67-8 Jul-Aug BB-6, 4, 8.0-20.0* LL-4, 1, 11.2* LL-5, 1, mut. MM-2, 1, 22.5 PP-1, 1, 13.0 D-68-1 Jan-Feb JJ-6, 1, 11.7 Chloroscombrus chrysurus (Linnaeus) Atlantic bumper D-67-4 May JJ-2, 3, 14.6-22.4 JJ-3, 2, 20.2-21.0 D-67-8 Jul-Aug BB-1, 1, 13.4 CC-7, 1, 20.3 D-67-16 Oct NN-1, 1, 27.7 Decapterus punctatus (Agassiz) round scad D-67-4 May AA-4, 6, 12.6-23.7 AA-5, 107, 16.0-39.8 AA-6, 2, 37.0-46.9 BB-6, 1, 35.1 CC-5, 4, 9.9-22.0 CC-6, 7, 12.7-22.0 CC-7, 13, 6.5-31.9 DD-5, 1, 32.3 EE-5, 1, 31.9 EE-6, 87, 16.3-36.8 FF-2, 1, 30.9 * either C. hippos or C. latus

FF-3, 99, 12.9-38.3 FF-4, 138, 12.0-37.5 FF-5, 4, 20.0-29.8 HH-2, 1, 28.4 HH-4, 63, 9.7-38.8 HH-5, 68, 16.3-24.8 JJ-4, 1, 29.9 KK-3, 14, 23.0-34.4 LL-1, 1, 25.8 LL-2, 1, 23.0 LL-4, 3, 23.8-43.6 MM-1, 1, 25.5 MM-3, 1, 27.2 NN-1, 1, 11.8 NN-2, 1, 16.9 NN-3, 2, 17.9-23.8 NN-4, 5, 17.3-20.0 PP-1, 6, 13.0-26.6 PP-2, 1, 20.5 D-67-8 Jul-Aug AA-4, 1, 35.8 AA-5, 2, 13.8-18.7 BB-6, 20, 13.6-22.9 DD-6, 1, 14.9 EE-4, 2, 21.6-27.3 EE-5, 1, 31.3 FF-6, 17, 15.6-43.1 GG-5, 3, 17.8-22.9 JJ-5, 12, 9.0-29.1 LL-3, 2, 19.5-25.8 LL-4, 22, 15.0-43.9 LL-5, 4, 10.5-23.9 MM-2, 1, 13.1 MM-3, 1, 20.3 NN-2, 2, 11.0-24.2 PP-1, 1, 14.8 D-67-16 Oct AA-4, 13, 23.6-35.9 DD-5, 8, 13.2-38.7 DD-6, 32, 9.7-37.5 FF-6, 1, 18.9 HH-4, 1, 16.9 PP-1, 1, 16.1 D-68-1 Jan-Feb AA-5, 1, 14.8 AA-7, 4, 10.8-19.5 DD-5, 3, 15.2-37.4 DD-6, 4, 14.0-23.0 EE-6, 1, 20.9 FF-5, 2, 16,6-16,8 GG-6, 5, 12.4-27.1 HH-4, 1, 18.8 JJ-4, 1, 19.3 JJ-5, 1, 17.2 JJ-6, 1, 30.2 KK-4, 2, 11.5-22.0 KK-5, 8, 8.9-19.6 MM-3, 1, 24.0 PP-1, 2, 17.2-21.3 Elagatis bipinnulata (Quoy and Gaimard) rainbow runner D-67-4 May NN-2, 1, 15.0

NN-3, 1, 18.4

NN-4, 1, 15.8 D-67-8 Jul-Aug KK-5, 1, 27.5 MM-2, 1, 27.2 NN-2, 2, 22.0-26.7 NN-3, 1, 11.5 Naucrates ductor (Linnaeus) pilotfish D-67-4 May CC-7, 1, 11.9 PP-2, 1, 10.6 Selar crumenaphthalmus (Bloch) bigeve scad D-67-4 May NN-3, 1, 27.0 NN-4, 1, 30.4 D-67-8 Jul-Aug JJ-6, 1, 49.2 Seriala dumerili (Risso) greater amberjack D-67-4 May GG-6, 1, 29.8 D-67-16 Oct CC-7, 4, 18.0-26.3 FF-5, 1, 36.9 GG-5, 2, 37.3-39.4 PP-1, 1, 76.0 D-68-1 Jan-Feb JJ-5, 1, 27.4 KK-5, 1, 23.8 Seriola fasciata (Bloch) lesser amberjack D-67-8 Jul-Aug MM-4, 1, 47.0 D-67-16 Oct JJ-6, 1, 54.1 Seriola rivoliana Valenciennes almaco jack D-67-8 Jul-Aug HH-7, 1, 21.3 JJ-5, 1, 47.5 KK-5, 1, 30.8 LL-5, 1, 18.0 D-67-16 Oct FF-5, 3, 20.0-40.7 KK-5, 1, 63.2 Seriola zonata (Mitchill) banded rudderfish D-67-4 May AA-5, 1, 29.8 Seriola sp. D-67-4 May AA-3, 1, 18.7 HH-7, 7, 16.3-34.2 KK-6, 2, 23.2-24.8 LL-5, 1, 23.5 NN-2, 4, 9.2-19.0 NN-3, 10, 10.0-24 1 NN-4, 1, 14.0 PP-1, 3, 8.4-22.1 PP-2, 1, 14.2 D-67-8 Jul-Aug BB-5, 2, 8.6-9.5 CC-6, 2, 8.5-11.6

EE-6, 1, 14.3

FF-6, 2, 14.5-16.2 KK-3, 1, 15.1 HH-5, 1, 9.9 LL-1, 1, 12.5 JJ-5, 1, 6.3 LL-3, 1, 14.6 KK-5, 1, 18.4 Trachinotus falcatus (Linnaeus) D-67-16 Oct permit DD-4, 1, 7.2 SL D-67-4 May DD-5, 1, 21.7 CC-6, 1, 9.0 DD-6, 2, 10.3-14.6 CC-7, 2, 5.2-9.4 FF-5, 1, 14.0 HH-5, 1, 13.9 GG-6, 1, 17.2 D-67-8 Jul-Aug JJ-2, 1, 21.9 HH-5, 1, 9.0 LL-4, 1, 13.9 JJ-5. 2. 6.7-7.9 NN-2, 1, 13.3 D-67-16 Oct NN-3, 1, 11.4 MM-4, 1, 11,4 D-68-1 Jan-Feb PP-1, 5, 11.2-18.0 D-68-1 Jan-Feb BB-5, 1, 12.7 AA-7, 2, 11.6-14.8 Trachinatus goodei GG-5, 1, 10.7 Jordan and Evermann JJ-4, 1, 21.9 palometa LL-3, 2, 19.5-20.4 D-67-8 Jul-Aug LL-5, 1, 29.2 NN-1, 1, 10.0 MM-1, 2, 19.2-29.5 D-67-16 Oct MM-3, 3, 17.0-35.8 NN-1, 1, 12.5 MM-4, 1, 17.2 Trachinotus sp. PP-1, 1, 15.6 D-67-4 May PP-2, 3, 9.0-13.0 EE-5, 1, 10.8 PP-3, 1, 20.1 LL-2, 1, 14.6 Trachinotus caralinus (Linnaeus) D-67-8 Jul-Aug Florida pompano FF-6, 1, 8.6 D-67-4 May GG-6, 1, 9,4 DD-1, 2, 14.7-14.9 Unidentified HH-5, 2, 10.2-11.5 D-67-8 Jul-Aug JJ-1. 2. 18.5-18.5 GG-5, 1, mut. JJ-3, 5, 15.7-19.2 LL-4, 1, mut. KK-2, 1, 17.4 LL-5, 2, mut.

Berry (1959) reported on young Caranx spp. from off the southeastern Atlantic coast of the United States and found that C. ruber was most widely distributed, C. fusus most abundant, and C. bartholomaei more restricted both in range of occurrences and numbers. Our material substantiates these observations. Berry (1959) attributed the scarcity of C. hippos and C. latus to their tendency to migrate inshore at relatively small sizes (21-50 mm SL). Since our net was quite successful in catching other Caranx species up to these sizes, the scarcity of these two species in our collections must be due to a genuine absence of young in offshore waters. Dooley (1972) caught very few C. hippos and no C. latus, thus ruling out the possibility that juveniles of these species may be found in slightly deeper water. Perhaps the major spawning of C. hippos and C. latus occurs in areas to the south of the Florida Straits. Our catches were made off Cape Kennedy and St. Lucie Inlet in water of high salinity (up to $37.5 \,^{\circ}/_{\circ\circ}$) which indicate a high seas or Gulf Stream origin.

In numbers of individuals taken at one time, Berry (1959, p. 439) averaged 10 *C. fusus* per occurrence, highest of all the species. In our collections too, *C. fusus* was highest, averaging 3.1 per occurrence (Table 2). This suggests that *C. fusus* is a gregarious species,

occurring in small groups or forming small schools earlier than other species.

Our catches of C. hippos and C. latus are too small to allow remarks on spawning periods. Our catches of C. ruber substantiate Berry's contention that spawning occurs from mid-February to mid-August; and the lack of small individuals in our catches implies most spawning occurs to the south of the Florida Straits or in waters contributing to the Gulf Stream. The 14.9 mm specimen we caught off South Carolina indicates some spawning takes place off the southeastern coast of the United States. Berry (1959) reported that C. bartholomaei spawned from mid-February to mid-September. Our catches (11.0 and 11.4 mm) on 4 February indicate a slightly earlier start in 1968, probably in mid- to late-January. McKenney et al. (1958) thought that C. fusus spawned the year-round, mostly from January through August with a peak in the summer. Berry (1959) thought most spawning occurred from April through September. Our catches are consistent with these observations, both in year-round occurrence of juveniles and increased summer abundance.

The various species of the genus *Caranx* were about equally distributed in temperatures from 25.0° to 30.0°C. Although they were caught in salinities ranging from 34.0 to 38.0 °/..., 74% were taken from water with salinities between 35.0 and 35.9 °/...

Decapterus punctatus apparently spawns the yearround with a peak in activity during the spring (Table 5). It is a creature of the middle shelf, not directly associated with inlets, estuaries, or the Gulf Stream. We caught this species during all seasons and over the entire range of our sampling area. Judging by our catches juveniles apparently rise to the surface during the pre-dawn period, occupy the surface during the day, and descend at night (Table 5). The diel difference breaks down in October due to a single catch of 32 fish made at 0544 h, a time within my definition of night. Our specimens are generally smaller than Dooley's (1972) possibly because smaller fishes are more strongly surface oriented, than larger ones.

Little is known of the early life history of the rainbow runner, *Elagatis bipinnulata*. Its restriction in our collections to Gulf Stream waters off Florida indicates an oceanic origin south of the Florida Straits. These specimens were identified following the description by Okiyama (1970). Key features are the serrated preopercular spines in fishes less than about 20.0 mm and the pair of unpigmented lines on each side of the otherwise darkly pigmented caudal peduncle (Fig. 14).

Because the diagnostically important body bands are not yet present on small *Seriola* sp. (Mather 1958), I was able to identify only those fish greater than 18.0 mm FL to species. Many larger fish (up to 35.8 mm) are identified only to genus but are probably either *S. dumerili* or *S. rivoliana*—all have seven spines in the first dorsal fin, five body bands plus a sixth on the peduncle, and intergrading numbers of rays in the second dorsal fin.

Dooley (1972) concluded that *S. dumerili* and *S. rivoliana* spawn during the spring. Munro et al. (1973) caught ripe *S. dumerili* in August and November and ripe *S. rivoliana* in November on Pedro Bank in the Caribbean. Our catches indicate spawning during fall, winter, and spring for the former species, summer and fall for the latter.

Our catches of three species of *Trachinotus* confirm Fields' (1962) observations: 1) spawning of *T*.

				Diel Analy	sis
Month	Transect Range	Number Caught	Size Range (mm FL)	Dawn-Day-Dusk	Night
May	AA-PP	641	6.5-46.9	640	1
Jul-Aug	AA-PP	91	9.0-43.9	89	2
Oct	AA-PP	56	13.2-38.7	24	34
Jan-Feb	AA-PP	37	8.9-37.4	34	3

Table 5.-Summary of catch data for Decapterus punctatus.

Figure 14.-Juvenile Elagatis bipinnulata, 27.5 mm FL.

carolinus and T. falcatus occurs offshore. (We caught the smaller specimens further offshore than the larger.) 2) Trachinotus carolinus begins spawning in May, and subsequently juveniles begin arriving inshore in waves. (We evidently sampled the first wave.) 3) Recruitment of T. falcatus occurs yearround on Florida beaches; May through October on Georgia beaches. (To this we can add the 12.7 mm individual caught off Cape Fear in January, which attests both to the possibility of winter spawning and to the utilization of the Gulf Stream by postlarvae.) 4) Trachinotus goodei is comparatively rare along the south Atlantic coast-the main part of its range occurring further south-and spawning apparently occurs in late summer and fall. (Our summer and fall catches off St. Lucie Inlet near the Gulf Stream indicate an origin to the south.)

CORYPHAENIDAE

Coryphaena equisetis Linnaeus	
pompano dolphin	JJ-2, 1, 16.1
D-67-4 May	JJ-6, 1, 29.8
HH-7, 2, 17.9-24.5	KK-5, 1, 39.0
LL-5, 2, 34.0-37.8	KK-6, 1, 11.3
D-67-8 Jul-Aug	LL-5, 7, 15.4-28.9
KK-6, 1, 11.4	MM-2, 1, 24.4
D-67-16 Oct	NN-1, 1, 15.1
KK-6, 5, 28.7-43.4	NN-2, 3, 15.7-49.0
LL-4, 1, 16.7	NN-3, 1, 17.9
MM-3, 1, 19.0	PP-1, 1, 15.7
NN-2, 1, 17.7	PP-2, 1, 17.3
PP-3, 1, 17.8	D-67-16 Oct
D-68-1 Jan-Feb	AA-7, 2, 18.6-29.9
NN-4, 1, 70.6	CC-7, 1, 32.0
PP-3, 1, 10.8	DD-6, 1, 13.8
Coryphaena hippurus Linnaeus	EE-6, 1, 18.9
dolphin	FF-5, 1, 35.6
D-67-4 May	FF-6, 2, 16.0-mut.
EE-6, 2, 25.4-28.5	JJ-4, 1, 32.0
HH-7, 3, 18.0-26.1	KK-3, 1, 15.2
KK-6, 2, 30.4-32.3	KK-4, 1, 112.9
LL-5, 4, 17.8-18.5	KK-5, 2, 28.4-46.6
NN-2, 3, 13.9-28.4	KK-6, 5, 28.7-43.4
NN-3, 1, 14.7	MM-1, 1, 41.8
NN-4, 2, 13.7-21.5	NN-I, I, 17.1
PP-2, 1, 17.0	NN-2, 2, 15.5-18.0
D-67-8 Jul-Aug	<i>D-68-1</i> Jan-Feb
AA-7, 1, 30.5	LL-3, 1, 48.8
BB-4, 1, 13.6	MM-4, 1, 23.1
BB-6, 1, 23.7	NN-4, 1, 31.3
CC-6, 2, 17.5-22.1	PP-1, 2, 18.8-31.5
DD-6, 1, 23.2	PP-2, 3, 16.9-21.0
GG-7, 2, 23.1-32.3	PP-3, 1, 24.4

All coryphaenids were X-rayed in order to count vertebrae. No overlap was found between the species. The counts were: Coryphaena equisetis 33 (13-14 + 19-20), C. hippurus 31 (13 + 18). Table 6 shows the size range of C. hippurus caught during each cruise and indicates spawning occurs at least sometime in every season if not continuously throughout the year. However, neither species was caught north of Cape Table 6.—Dolphin (*C. hippurus*): number caught and length range (mm FL) by cruise. One specimen (112.9 mm FL) from October cruise not included.

Month	Length range (mm FL)	N
May	13.7-32.3	18
Jul-Aug	11.3-49.0	27
Oct	13.8-46.6	21
Jan-Feb	16.9-48.8	9

Kennedy during the winter, suggesting that spawning then is restricted to areas to the south.

There were no significant differences between day and night tows in numbers or sizes caught. Apparently, a towing speed of 5 knots (9.27 km/h) is sufficient to prevent daytime net avoidance, at least in postlarvae less than about 50.0 mm. At larger sizes, juvenile dolphin may acquire the adult habit of lurking below rafts of sargassum and other flotsam and thus may not be susceptible to capture by surface nets.

LUTJANIDAE

Rhomboplites aurorubens (Cuvier)	Lutjanus sp.
vermilion snapper	D-67-8 Jul-Aug
D-67-8 Jul-Aug	MM-1, 1, 14.2
FF-3, 1, 23.0	NN-1, 1, 17.7

The vermilion snapper was identified by its dorsal count which is distinctive among lutjanids: D: XII, 11. The meristic characters of the unidentified Lutjanus are as follows: D: X, 14; A: III, 9; Pect: 16; Caudal: 8, 9, 8, 8; vertebrae: 24 (10 + 14). Three western North Atlantic lutjanids share these meristic characters: Lutjanus aya, L. blackfordii, and L. lutjanoides (Anderson 1967). The smaller specimen is illustrated in Figure 15. In the larger specimen, pigment is generally heavier and extends over the dorsal fin between the third and tenth spines. Pigment on the body forms six bars from nape to peduncle; the posterior three reaching from the dorsal edge of the body to the ventral edge; the anterior three ending at about the midline. The cluster of spots anterior to the eye is extended to the snout tip, and together with a group of spots on the preopercle and opercle creates the impression of a bar through the eye.

LOBOTIDAE

Lobotes surinamensis (Bloch)	Unidentified
tripletail	D-67-4 May
D-67-16 Oct	HH-2, 1, 15.7
FF-5, 1, 44.3	D-67-16 Oct
SPARIDAE	BB-2, 3, 13.8-14.6
SI AMDALI	DD-2, 1, 13.4
Stenotomus chrysops (Linnaeus)	EE-2, 1, 13.3
scup	HH-6, 2, 10.8-11.1
D-67-4 May	KK-3, 7, 11.7-14.0
AA-2, 1, 17.3	D-68-1 Jan-Feb
AA-5, 1, 15.9	AA-3, 34, 12.6-15.5
FF-3, 1, 49.5	AA-4, 39, 11.8-23.1

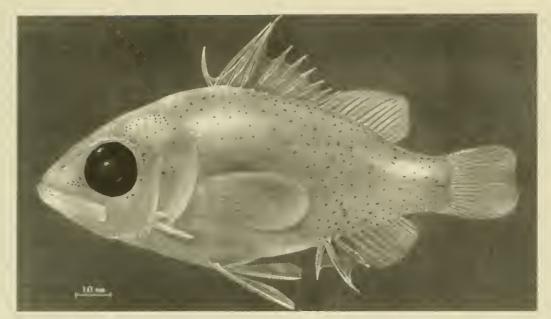


Figure 15.-Unidentified postlarval Lutjanus sp., 14.2 mm FL.

BB-1, 431, 11.9-15.9 BB-2, 46, 13.2-16.3 CC-1, 7, 12.2-14.5 CC-2, 9, 11.5-15.3 CC-3, 9, 12.2-15.5 DD-1, 4, 11.0-15.8 DD-2, 23, 12.4-16.8 EE-1, 7, mut.-15.7 EE-3, 1, 20.0 EE-4, 3, 10.0-14.9 EE-5, 1, 14.0 FF-5, 1, 15.6 GG-1, 1, 15.4 HH-1, 2, 13.0-13.5 HH-5, 2, mut.-12.4 NN-1, 2, mut.-14.8

SCIAENIDAE

Cynoscion nothus (Holbrook) silver seatrout D-67-16 Oct HH-6, 5, 15.1-17.9

banded drum D-67-16 Oct HH-6, 1, 7.7 SL Leiostomus xanthurus Lacepede spot D-67-16 Oct HH-7. 1. 8.4 D-68-1 Jan-Feb AA-2, 1, 15.2 CC-3, 1, mut. DD-1, 3, 13.6-15.8 DD-2. 6, 10.8-16.2 DD-3, 6, 12.1-17.4 EE-4, 1, 6.5 SL GG-2, 1, 12.8 JJ-3, 2, 9.8-12.8 Stellifer lanceolatus (Holbrook) star drum D-67-16 Oct LL-1, 1, 28.2

Larimus fasciatus Holbrook

The catches made by the Gulf V plankton sampler (unpublished) indicate that spot spawn in the winter in offshore waters and the larvae approach the beach as they grow (Peter L. Berrien, National Marine Fisheries Service, Sandy Hook Laboratory, pers. commun.). Spawning apparently occurs at least as far south as Cape Kennedy judging from the occurrences of small larvae. The sizes of young we caught in the surface net are about the same as those caught in the Gulf V.

Although we caught many Atlantic croaker larvae in the Gulf V plankton nets, which sampled to a depth of 33 m, we caught none in the surface net. Perhaps these larvae are less strongly surface oriented than spot larvae.

Mullus auratus Jordan and Gilbert red goatfish D-67-4 May AA-1, 1, 28.0 BB-4, 9, 16.0-25.0 BB-5, 5, 23.0-31.0 CC-4, 1, 32.0 CC-6, 1, 25.0 DD-3, 13, 19.0-31.1 DD-4, 1, 23.0 DD-5, 19, 16.0-26.0 DD-6, 2, 16.5-40.0 EE-3, 3, 21.0-27.5 EE-4, 11, 16.0-19.5 EE-5, 1, 23.5 FF-2, 1, 28.5 GG-5, 1, 48.0 GG-7, 1, 21.0 HH-4, 1, 48.5 HH-5, 1, 22.0 KK-5, 1, 34.0 D-68-1 Jan-Feb AA-7, 6, 8,5-12.0 DD-6. 3. 11.0-12.5 EE-5, 2, 19.0-20.0

MULLIDAE

FF-5, 1, 11.0 FF-6, 1, 14.5 GG-7, 2, 17.5-19.5 HH-6, 1, 25.0 JJ-5, 5, 16.0-19.0 KK-6, 1, 20.0 LL-5, 2, 17.0-17.5 MM-4, 25, 12.0-29.0 NN-2, 1, 18.5 PP-2, 3, 8,0-11.0 Pseudupeneus maculatus (Bloch) spotted goatfish D-67-4 May LL-4, 1, 49.5 Unidentified D-67-4 May BB-4, 2, mut. DD-5, 5, 19.0-23.5 DD-6, 2, mut.-40.5 EE-4, 1, mut. D-68-1 Jan-Feb AA-7, 6, 10.0-15.0 HH-5, 1, 23.0 MM-4, 4, 11.0-mut. PP-2, 2, 7.0-13.0

M. C. Caldwell's data (1962, Table 7) indicates a spawning period lasting from January into May for *Mullus auratus* and our catches substantiate this for two year classes. A difference exists, however, between her data and ours in the abundance of *Pseudupeneus maculatus*. Whereas her data suggest that *P. maculatus* is a rather common constituent of the pelagic fauna, ours indicate the species to be rare, at least compared to *M. auratus*. Struhsaker (1969) caught *M. auratus* at more than 50% of the stations in the species' primary habitat; *P. maculatus* at between

10% and 50%. Thus the latter species is probably less common than the former but not so rare as to preclude its progeny being encountered. If, as M. C. Caldwell (1962) suggests, *P. maculatus* has two juvenile stages, one pelagic, the other a shallow-water, bottom-living stage, then the pelagic stage must not be a strongly surface oriented one except under the influence of a night-light (the method most used to collect her specimens) and is thus not susceptible to capture with a net towed within 1 m of the surface.

KYPHOSIDAE

Kyphosus incisor (Cuvier)	PP-3, 1, 11.3
yellow chub	<i>D-68-1</i> Jan-Feb
D-67-8 Jul-Aug	LL-5, 1, 21.8
AA-7, 1, 16.4	Kyphosus sectatrix (Linnaeus)
D-67-16 Oct	Bermuda chub
AA-7, 1, 14.7	D-67-16 Oct
LL-4, 1, 15.4	FF-5, 5, 28.5-34.0
LL-5, 1, 17.9	GG-5, 2, 50.4-55.0
NN-3, 2, 23.0-28.7	JJ-6, 1, 56.1
PP-1, 1, 14.5	KK-6, 1, 51.9

The seasonality indicated by our catches of Kypho-sus sectatrix is misleading. Dooley (1972, Table 4) reported taking small specimens throughout the year, and Moore (1962, Fig. 5) showed size frequency data indicating that spawning "occurs over a wide period of time during the year," probably throughout the year. Both authors suggested that young K. sectatrix were common among rafts of sargassum. Why we failed to catch this species during all seasons cannot be explained.

CHAETODONTIDAE

Holacanthus tricolor (Bloch)	
rock beauty	AA-6, 3, 16.3-22.0
D-67-16 Oct	DD-6, 2, 16.8-17.1
HH-7, 1, 12.9	FF-5, 3, 17.5-22.3
Pomacanthus arcuatus (Linnaeus)	FF-6, 1, 17.5
gray angelfish	HH-7, 1, 11.0
D-67-16 Oct	JJ-6, 1, 31.9
KK-5, 1, 11.2	NN-3, 1, 22.0
Unidentified	PP-1, 2, 14.9-18.4
D-67-8 Jul-Aug	<i>D-68-1</i> Jan-Feb
KK-6, 1, mut.	MM-3, 1, 17.1
	Chromis sp.
POMACENTRIDAE	D-67-16 Oct
	LL-5, 1, 13.3
Abudefduf saxatilis (Linnaeus)	Unidentified
sergeant major	D-67-4 May
D-67-16 Oct	DD-6, 1, 9.8
AA-5, 2, 19.5-25.3	NN-3, 1, mut.

Munro et al. (1973) reported a spawning maximum in April for *Abudefduf saxatilis*, a secondary peak in September, and no spawning from January through March. The primary occurrence of this species in October in our catches is probably a result of the fall spawning, but the absence of this species in the May and July-August cruises cannot be explained.

MUGILIDAE

Mugil cephalus Linnaeus striped mullet D-67-4 May DD-3, 1, 19.0 DD-6, 1, 10.5 D-67-16 Oct AA-6, 1, 14.0 D-68-1 Jan-Feb AA-1, 4, 21.0-24.5 AA-2, 8, 18.0-23.5 AA-3, 5, 21.0-26.5 AA-4, 1, 24.0 AA-5, 6, 17.5-20.0 AA-7, 13, 8.0-22.0 BB-1, 3, 21.0-22.0 BB-2, 2, 19.0-20.0 BB-3, 6, 17.0-24.5 BB-4, 7, 23.0-26.0 BB-5, 15, 17.0-25.0 CC-1, 5, 23.0-25.5 CC-2, 2, 21.5-22.0 CC-3, 3, 21.0-24.0 CC-5, 3, 24.5-25.0 CC-6, 6, 18.0-24.5 DD-5, 1, 21.0 DD-6, 37, 7.0-20.5 EE-3, 1, 19.5 EE-4, 7, 19.0-22.5 FF-4, 2, 20.5-22.0 FF-5, 7, 18.5-22.0 GG-1, 1, 21.5 GG-2, 3, 20.0-20.5 GG-3, 7, 20.0-26.0 GG-4, 1, 17.0 GG-5, 3, 6.0-19.0 HH-1, 3, 20.0-21.0 JJ-2, 2, 20.5-23.0 JJ-5, 3, 24.0-25.5 KK-5, 2, 21.0-22.0 PP-2, 1, 11.5 PP-3, 1, 12.0 Mugil curema Valenciennes white mullet D-67-4 May AA-1, 4, 19.5-23.0 AA-5, 4, 17.5-21.5 AA-6, 4, 6.0-14.0 BB-3, 8, 19.6-21.9 BB-4, 8, 17.0-21.0 BB-5, 3, 14.0-20.0 BB-6, 2, 17.0 CC-3, 1, 22.0 CC-4, 1, 19.0 CC-5, 6, 14.5-20.0 CC-6, 40, 8.0-22.5 CC-7, 20, 5.5-12.5 DD-1, 15, 21.0-23.5 DD-2, 19, 19.0-24.0 DD-3, 40, 17.5-24.0 DD-4, 40, 16,0-22.0 DD-5, 34, 15.5-19.0 DD-6, 8, 12.5-23.5 EE-1, 10, 20.0-25.0

EE-2, 4, 20.5-21.0 EE-3, 6, 20.0-22.0 EE-4, 20, 16.0-23.0 EE-5, 4, 17.0-24.0 FF-1, 1, 25.5 FF-4, 4, 10.5-20.0 GG-4, 6, 19.5-25.0 GG-5, 10, 19.0-23.5 GG-6, 2, 17.0-21.0 HH-4, 1, 25.0 HH-5, 6, 16.5-23.0 HH-6, 4, 8.5-22.0 JJ-2, 1, 26.0 JJ-5, 8, 18.5-24.0 KK-5, 6, 20.0-23.0 LL-1, 2, 18.0-21.0 LL-4, 3, 15.0-17.0 MM-3, 3, 14.0 D-67-8 Jul-Aug AA-5, 1, 21.0 KK-6, 1, 16.0 LL-5, 1, 12.5 D-67-16 Oct AA-6, 1, 13.5 DD-5, 1, 18.5 DD-6, 1, 11.0 EE-6, 2, 13.5-14.0 HH-6, 1, 18.0 KK-5, 2, 15.0-18.0 LL-5, 1, 10.0 MM-2, 1, 17.0 MM-3, 4, 14.0-17.0 NN-2, 2, 10.0-15.0 NN-3, 1, 12.5 PP-1, 2, 11.5-14.0 D-68-1 Jan-Feb AA-7, 1, 22.0 BB-3, 1, 23.0 BB-4, 1, 25.0 BB-5, 1, 25.5 CC-3, 1, 23.0 DD-6, 2, 7.0-18.0 EE-5, 1, 17.0 GG-2. 1. 21.0 GG-6, 1, 15.0 JJ-5, 1, 21.0 JJ-6, 1, 20.0 MM-4, 1, 21.0 Mugil sp. D-67-4 May AA-6, 2, 6.0-mut. BB-5, 1, 12.0 CC-3, 1, 4.4 CC-6, 18, mut.-14.0 CC-7, 3, 5.0-8.5 DD-1, 2, mut. DD-3, 3, mut.-20.5 DD-5, 4, mut.-16.0 EE-4, 4, mut.-20.5 EE-5, 3, mut.-17.5 GG-5, 1, mut. HH-5, 1, 19.0 HH-6, 2, mut.-16.0

LL-4, 1, mut.	EE-4, 1, 22.0
D-68-1 Jan-Feb	FF-5, 1, 11.0
AA-7, 7, mut.	FF-6, 1, 10.0
BB-5, 2, 17.5-20.0	MM-4, 1, 21.0
DD-6, 7, 7.5-12.5	PP-2, 1, 5.5 SL

Our catches (Table 7) support Anderson's (1958) contention that *Mugil cephalus* spawns during early

Table 7.-Seasonal catch of two species of mullet.

	Spring	Summer	Fall	Winter
Mugil curema	348	3	19	14
Mugil cephalus	2	0	1	171

winter (Fig. 16) when continental shelf water temperatures are falling and M. curema spawns during the spring (Fig. 17) when temperatures are rising. However, our catches show no inshore movement with growth in either species (as reported for both species by Anderson 1957, 1958). The largest mullet we caught was 26.5 mm FL, approximating the maximum size caught by Anderson (1957, Table 2) offshore. Perhaps growth of juveniles is arrested at about this size and resumes with the migration of postlarval mullet from ocean to estuary. Were this not the case, larger fish would occasionally be caught offshore.

A second examination of all mullets was made to determine whether the freshwater mullet, *Agonostomus monticola*, was present. None was found. *Mugil cephalus* and *M. curema* occurred together in only 12 tows.

SPHYRAENIDAE

Sphyraena borracuda (Walbaum)	
great barracuda	KK-2, 1, 33.7
D-67-8 Jul-Aug	LL-2, 1, 37.8
NN-1, 1, 16.3	D-67-16 Oct
NN-2, 1, 16.8	AA-4, 1, 42.1
Sphyroena borealis DeKay	D-68-1 Jan-Feb
northern sennet	DD-5, 1, 23.9
D-67-4 May	DD-6, 1, 30.0
AA-4, 1, 40.4	EE-6, 1, 42.9
FF-1, 2, 38.4-49.4	PP-1, 1, 34.3

If Sphyraena borealis and S. picudilla are valid separate species, those specimens here identified as the former species may well include the latter, for I was unable to find a character which separates the two species in fishes less than 50 mm. I found that characters such as relative eye size and nature of the interorbital space (de Sylva 1963, p. 34) were insufficiently different in small specimens to permit separation into two species.

URANOSCOPIDAE

Unidentified D-67-4 May FF-3, 1, 23.5

FF-4, 1, 21.9 HH-4, 2, 15.9-18.3 JJ-3, 1, 16.0

KK-3, 1, 17.7	KK-2, 3, 11.4-16.4
D-67-8 Jul-Aug	MM-1, 5, 20.1-20.6
JJ-3, 2, 8.1-8.9	D-67-8 Jul-Aug
D-67-16 Oct	BB-3, 1, 10.5
DD-3, 1, 11.7	D-67-16 Oct
DD-4, 1, 9.4	CC-2, 2, 14.8-16.5
GG-5, 1, 13.1	DD-3, 1, 11.2
HH-6, 2, 9.5-12.8	KK-3, 1, 16.9
<i>D-68-1</i> Jan-Feb	<i>D-68-1</i> Jan-Feb
GG-5, 5, 9.2-10.9	AA-4, 1, 19.8
KK-5, 1, 14.9	NN-1, 1, 13.6
BLENNIIDAE	GOBIIDAE
Unidentified	Unidentified
D-67-4 May	D-67-8 Jul-Aug
AA-4, 1, 21.4	MM-2, 2, 4.1-4.5
AA-5, 1, 21.8	OPMDVI IDA D
CC-5, 1, 14.9	GEMPYLIDAE
FF-1, 4, 13.3-16.7	Diplospinus multistriatus Maul
FF-3, 6, 9.3-21.0	D-67-16 Oct
FF-4, 1, 21.0	NN-3, 1, 26.9
HH-2, 4, 11.7-13.4	D-68-1 Jan-Feb
JJ-3, 2, 13.8-14.8	PP-2, 1, 14.7

E L L

Voss (1954) described and assigned larvae to two types within the genus *Gempylus*: *Gempylus* A and *Gempylus* B. The two specimens reported on here are assignable to her *Gempylus* A by virtue of the preopercular spination and lack of rays following the serrated pelvic spine. As Ahlstrom (1971) reported, Voss' *Gempylus* A larvae are *Diplospinus multistriatus*. Voss (1954) reported larval occurrences in winter, spring, and summer. The addition of our catch in the fall (October) indicates this species spawns throughout the year.

SCOMBRIDAE

Auxis sp. D-67-4 May LL-5, 2, 15.5-19.1 MM-4, 4, 17.4-23.7 D-67-8 Jul-Aug BB-6, 1, 22.4 GG-6, 2, 12.2-mut. GG-7. 1. 11.0 HH-7, 5, 13.3-21.3 KK-6, 3, 7.9-13.9 D-68-1 Jan-Feb GG-7, 1, 15.0 JJ-6, 1, 13.7 KK-6, 1, 17.5 MM-4, 10, 12.6-21.7 Euthynnus alletteratus (Rafinesque) little tunny D-67-8 Jul-Aug FF-4, 1, 11.2 GG-6, 5, 12.2-14.5 GG-7, 1, 12.0 JJ-4, 1, 16.7

Scomber japonicus Houttuyn chub mackerel D-67-4 May FF-4, 1, mut. HH-5, 1, 22.2 D-68-1 Jan-Feb AA-5, 1, 15.7 AA-7, 2, 18.6-22.2 KK-5, 1, 29.5 Scomberomorus maculatus (Mitchill) Spanish mackerel D-67-4 May LL-2, 1, 21.9 MM-1, 1, 22.1 D-67-8 Jul-Aug DD-1, 1, 27.1 DD-3, 1, 20.8 Thunnus sp. D-67-4 May PP-1, 1, 13.7 D-67-8 Jul-Aug GG-7, 1, 9.9

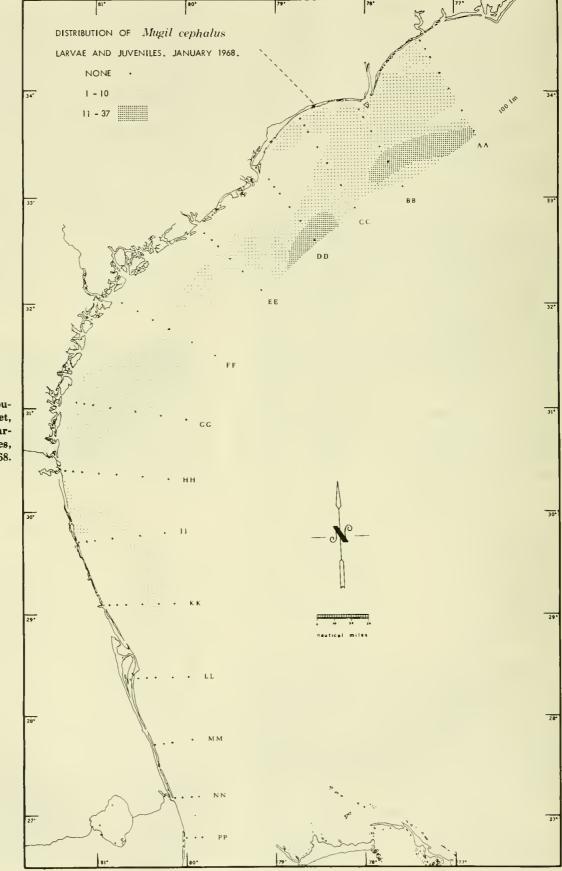
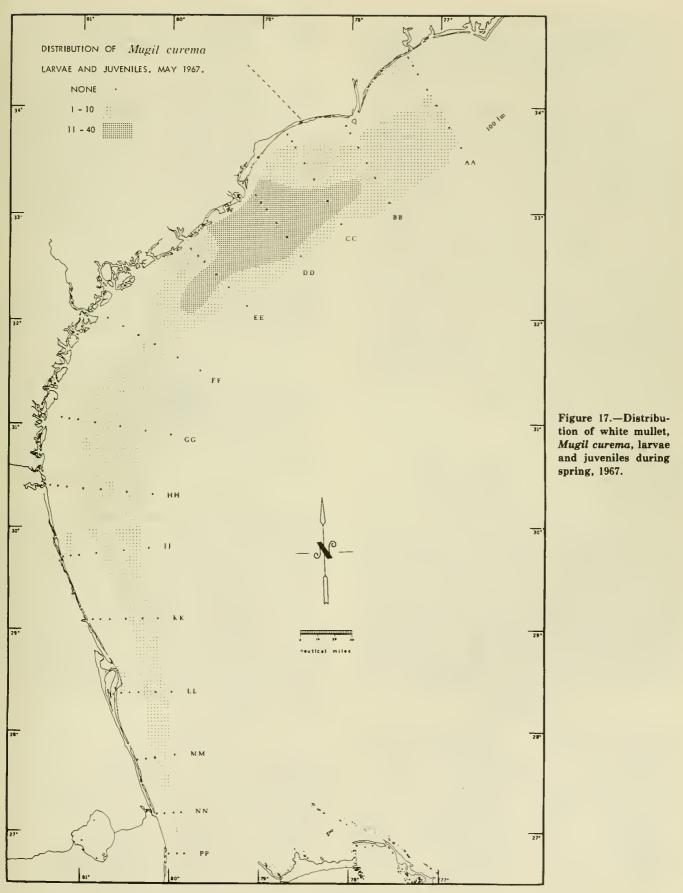



Figure 16.—Distribution of striped mullet, *Mugil cephalus*, larvae and juveniles, during winter, 1968.

Of the 51 scombrids in the collections, only 8 (16%) were captured in day tows. Postlarval scombrids apparently 1) are able to see and avoid nets approaching at 5 knots, or 2) engage in diel vertical migrations and are only available to surface samplers during twilight or night.

Dooley (1972) reported taking young (37-78 mm) Scomber japonicus schooling with Trachurus lathami and Decapterus punctatus. Our S. japonicus specimens were all taken in association with juveniles of Decapterus punctatus (and was the only scombrid species so associated). Judging from our catches in January, February, and May, and Dooley's (1972) catches in March, this species probably spawns during winter and spring in the South Atlantic Bight.

We did not catch enough postlarval Spanish mackerel to determine the length of the spawning period, but in 1967 spawning began at least as early as May off the east coast of Florida. We caught larvae in Gulf V plankton samplers as far north as Jacksonville on 10 May (unpublished) and the size of the postlarvae caught on 8 May indicates an onset of spawning perhaps as early as late April. The postlarvae reported on here were all taken within 15 miles (27.81 km) of shore while smaller larvae were taken as far offshore as 62 miles (114.95 km), indicating an offshore spawning and inshore migration with growth.

XIPHIIDAE

Xiphias gladius Linnaeus	
swordfish	FF-6, 2, 31.0-94.5
D-67-4 May	GG-7, 1, 25.9
NN-4, 2, 20.6-23.9	<i>D-68-1</i> Jan-Feb
D-67-16 Oct	PP-2, 1, 21.5
FF-4, 1, 26.4	PP-3, 1, 28.0

Our data do little to support the contention of Arata (1954) and Täning (1955) that swordfish spawning occurs in two centers in the Atlantic: 1) west of the Florida Straits in the Gulf of Mexico; 2) in the southern part of the Sargasso Sea. The specimens we caught off Georgia in October could have arrived from the former area via the Florida Current and from the latter area via the Antilles Current. The specimens caught in the Florida Straits in May and February probably originated in the Gulf of Mexico.

ISTIOPHORIDAE

Istiophorus platypterus	NN-3, 1, 37.8
(Shaw and Nodder)	PP-2, 2, 34.4-42.9
sailfish	Unidentified (b.)
D-67-4 May	D-67-4 May
LL-4, 1, 79.3	NN-3, 1, 13.1
Makaira nigricans Lacepede	NN-4, 1, mut.
blue marlin	D-67-8 Jul-Aug
D-67-8 Jul-Aug	BB-4, 3, 10.4-11.8
NN-3, 1, 14.8	BB-6, 8, 10.9-24.3
Unidentified (a.)	CC-6, 3, 13.4-15.4
D-67-4 May	DD-6, 1, 8.1
LL-5, 2, 49.3-58.5	FF-6, 1, 12.3

GG-6, 1, 15.3	NN-3, 1, 17,7	
KK-6, 3, 11.9-16.9	NN-4, 1, 10.3	
LL-5, 1, 27.4	D-67-16 Oct	
NN-2, 1, 11.0	NN-3, 1, 8.5	

The blue marlin, Makaira nigricans, was positively identified by its vertebral count (11 + 13) and short snout length relative to eye diameter. The sailfish, Istiophorus platypterus, was identified by vertebral count (12 + 12) and dorsal fin formula (44 spines, 7 rays). The five specimens in "Unidentified (a.)" have 12 + 12 vertebrae (thus eliminating *M. nigricans*) and 49 or 50 total dorsal fin elements (too low a count for Tetrapterus pfluegeri). Distinguishing between the remaining two species of western North Atlantic istiophorids at this size is not possible. The 27 specimens in "Unidentified (b.)" have 12 + 12 vertebrae and long snout length relative to eye diameter. Because posterior dorsal fin rays are not visible on X-rays, no counts were made. All specimens between 8.1 and 16.9 mm FL have two secondary spines on the vertical limb of the preopercle (Fig. 18),

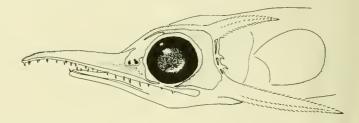


Figure 18.—Head of hypothetical istiophorid larva showing pair of secondary preopercular spines.

but the diagnostic significance of this is not clear. Voss (1953) showed one such spine on sailfish larvae 3.9-6.3 mm, and no spines on specimens 8.0 mm and larger. Ueyanagi's (1963) illustrations showed 1) one spine on sailfish 5.1-13.2 mm and none on a 20.3 mm specimen, and 2) one spine on *Tetrapterus* sp. larvae 4.5 and 5.0 mm and two spines on specimens 12.0-21.2 mm. Gehringer's (1956) illustrations showed two spines on sailfish larvae 11.3-20.9 mm (except one spine on a 14.6 mm specimen), and mentioned that character in his text, thus ruling out "artist's license". Until the ontogeny of all istiophorid species is described and compared, the 27 specimens at hand must remain unidentified.

STROMATEIDAE

Nomeus gronovii (Gmelin)	Peprilus triocanthus (Peck)
man-of-war fish	butterfish
D-67-4 May	D-67-4 May
LL-5, 1, 18.3	AA-2, 2, 12.0-12.2
<i>D-68-1</i> Jan-Feb	CC-6, 1, 19.0
DD-6, 1, 15.8	EE-1, 2, 23.5-24.2
LL-3, 1, 28.8	EE-5, 1, 18.8
PP-2, 3, 10.1-18.7	EE-6, 1, 14.8
	FF-2, 11, 14.5-39.6
	FF-3 40 11.3-52.1

FF-4, 39, 12.7-28.7 GG-5, 1, 18.2 HH-3, 3, 20,8-24.0 HH-1, 1, 32.4 HH-2, 3, 14.8-22.5 Psenes cyanophrys Valenciennes freckled driftfish HH-4, 5, 12.8-24.3 D-67-4 May HH-5, 1, 14.8 JJ-3, 7, 8.6-26.9 EE-6, 1, 21.0 JJ-6, 1, 24.2 KK-1, 4, 21.6-25.4 MM-4, 1, 30.1 KK-2, 8, 12.9-32.9 KK-3, 1, 22.8 PP-2, 1, 15.2 D-67-8 Jul-Aug MM-1, 1, 15.9 AA-7, 1, 23.4 D-67-8 Jul-Aug BB-5, 1, 19.8 DD-2, 1, 13.3 BB-6, 1, 22.5 FF-2, 4, 12.4-14.1 CC-7, 1, 14.3 D-67-16 Oct LL-3. 2. 11.3-12.2 DD-6, 1, 23.7 LL-5, 1, 15.4 D-68-1 Jan-Feb NN-3, 1, 19.9 AA-2, 1, 14.9 AA-4, 2, 14.2-15.4 D-68-1 Jan-Feb DD-6, 1, 22.2 FF-5, 3, 10.8-18.2 PP-2, 1, 60.9 GG-2, 18, 11.3-38.0 GG-3, 3, 16.6-41.7

Small butterfish are probably more typical of surface waters north of Cape Kennedy than south. Dooley (1972) caught none off Miami, and except for one specimen from the offing of Vero Beach, our records were all north of Cape Kennedy. Lengths of specimens indicate spawning occurs throughout the year, and is not restricted to summer and early fall as is true north of Cape Hatteras (Haedrich 1967).

I cannot report how strongly associated with medusae any of these stromateids are since the net only rarely contained jellyfish or Portugese man-ofwar, and not on any of the stations where stromateids were taken.

SCORPAENIDAE

DACTYLOPTERIDAE

Scorpaena sp. D-67-4 May JJ-3, 1, 11.8 D-67-8 Jul-Aug PP-3, 1, 10.5 D-67-16 Oct CC-5, 1, 11.2 HH-6, 1, 10.3 MM-4, 2, 9.3-10.1 D-68-1 Jan-Feb AA-5, 1, 11.6 NN-2, 1, 11.5

TRIGLIDAE

Unidentified D-67-4 May AA-1, 1, 11.2 D-67-16 Oct CC-5, 2, 5.2-6.4 CC-6, 1, 9.8 HH-6, 2, 12.7-13.5 HH-7, 1, 11.5 Dactylopterus volitans (Linnaeus) flying gurnard D-67-4 May NN-3, 1, 10.5 D-67-8 Jul-Aug DD-6, 1, 6.3 SL NN-3, 1, 11.2 SL

BOTHIDAE

Bothus ocellatus (Agassiz) eyed flounder D-67-4 May AA-2, 15, 15.2-23.8 AA-3, 4, 17.6-21.9 AA-4, 2, 20.1-20.7 AA-6, 1, 19.3 BB-4, 1, 13.0 CC-7, 1, 11.7 KK-4, 1, 19.5 LL-4, 1, 16.6 LL-5, 1, 17.5 MM-3, 2, 10.0-15.7 NN-4, 1, 13.2 PP-1, 1, 13.5 D-67-8 Jul-Aug AA-1, 1, 11.5 AA-6, 2, 15.0-15.2

AA-7, 5, 7.4-21.4	EE-6, 2, 9.6-16.9
DD-3, 1, 7.1	FF-3, 4, 13.7-21.1
DD-6, 1, 19.1	FF-4, 12, 12.9-18.6
FF-1, 1, 19.5	FF-5, 8, 13.0-23.8
FF-2, 10, 14.3-19.6	GG-5, 1, 21.8
HH-6, 3, 10.1-16.0	GG-6, 4, 16.3-17.3
JJ-4, 3, 12.0-17.2	GG-7, 1, 12.2
JJ-5, 2, 9.4-12.8	HH-5, 2, 12.9-16.2
KK-6, 2, 11.2-14.5	JJ-5, 5, 12.5-20.1
MM-1, 7, 10.3-18.4	KK-5, 6, 14.1-20.0
MM-2, 20, 13.2-19.3	LL-2, 1, 16.1
MM-3, 6, 9.7-17.4	NN-1, 8, 11.0-22.8
NN-2, 1, 12.8	NN-2, 4, 19.3-24.0
PP-1, 3, 11.4-24.9	NN-3, 2, 21.0-24.0
PP-3, 1, 21.7	PP-1, 1, 17.4
D-67-16 Oct	PP-2, 2, 14.3-20.1
AA-5, 1, 10.3	PP-3, 1, 14.9
DD-6, 2, 13.9-15.5	Unidentified
HH-6, 45, 11.5-23.3	D-67-4 May
HH-7, 13, 11.5-21.9	AA-1, 4, 11.2-13.5
LL-4, 4, 10.5-21.1	AA-2, 2, 14.2-14.4
NN-3, 1, 18.5	HH-2, 1, 13.8
PP-1, 7, 12.2-19.9	D-67-8 Jul-Aug
PP-2, 8, 13,4-21.6	FF-2, 10, 13.2-14.5
<i>D-68-1</i> Jan-Feb	D-67-16 Oct
AA-4, 3, 17.2-20.1	GG-4, 1, 12.7
BB-2, 2, 12.4-12.9	HH-6, 5, 10.3-17.0
BB-4, 5, 11.1-15.4	<i>D-68-1</i> Jan-Feb
CC-4, 1, 17.1	AA-4, 1, 13.4
DD-6, 1, 17.3	DD-3, 3, 10.1-12.4
EE-2, 1, 21.6	FF-5, 2, 11.2-13.2
EE-4, 2, 12.9-20.3	JJ-3, 1, 16.3
EE-5, 2, 14.5-15.3	LL-5, 1, 13.2

Bothus ocellatus larvae are a common constituent of the surface fauna off the southeastern United States. They occurred during all seasons and throughout the entire range of our survey. Similar length ranges during all seasons indicate year-round spawning (Table 8), and maximum lengths of about 24.0 mm indicate that this is the maximum size before metamorphosis when the larvae begin a demersal existence and are no longer available to surface samplers.

All of the unidentified bothid larvae are either *Citharichthys* sp. or *Etropus* sp. None is assignable to *C. arctifrons* or *E. microstomus* as described by Leonard (1971). Because of overlapping meristic characters among species in these two genera we are unable to identify these specimens.

SOLEIDAE

Gymnachirus melas Nichols	D-68-1 Jan-Feb
naked sole	LL-2, 1, 123.0

Table 8.-Summary of catch data for Bothus ocellatus.

Month	Transect range	Number caught	Size range (mm FL)			
May	AA-PP	31	10.0-23.8			
Jul-Aug	AA-PP	69	7.1-24.9			
Oct	AA-PP	81	10.3-23.3			
Jan-Feb	AA-PP	81	9.6-24.0			

I was unable to find a record in the literature of this species occurring at the surface. We caught our specimen at night over a depth of 15 m.

Symphurus sp. D-67-16 Oct HH-6, 1, 11.3 BALISTIDAE Aluterus heudeloti Hollard dotterel filefish D-67-4 May JJ-1, 1, 74.9 D-67-8 Jul-Aug CC-5, 1, 30.6 CC-6, 1, 27.0 HH-7, 1, 59.1 D-67-16 Oct MM-2, 1, 67.8 Aluterus monoceros (Linnaeus) Balistes sp. unicorn filefish D-67-8 Jul-Aug KK-6, 1, 53.0 D-67-16 Oct PP-1, 2, 68.0-70.0 Aluterus schoepfi (Walbaum) orange filefish D-67-4 May DD-1, 1, 11.0 JJ-5, 1, 32.9 NN-4, 1, 28.0 D-67-8 Jul-Aug BB-5, 1, 30.5 FF-6, 1, 21.0 D-67-16 Oct GG-5, 1, 22.5 JJ-4, 1, 34.0 NN-2, 2, 68.0-78.1 Aluterus scriptus (Osbeck) scrawled filefish D-67-4 May NN-4, 1, 37.0 D-67-8 Jul-Aug GG-6, 1, 63.9 KK-6, 1, 44.0 LL-5, 2, 49.0-98.7 MM-3, 2, 32.5-88.7 PP-3, 1, 63.8 D-67-16 Oct KK-6, 2, 42.0-79.7 NN-3, 1, 78.1 PP-3, 2, 43.5-73.2 Aluterus sp. D-67-4 May CC-5, 1, 19.0 Balistes capriscus Gmelin gray triggerfish D-67-8 Jul-Aug AA-7, 1, 25.0 BB-6, 1, 39.2 CC-6, 1, 32.8 HH-7, 1, 27.5

CYNOGLOSSIDAE

JJ-5, 1, 11.1 JJ-6, 1, 18.4 KK-5, 6, 17.5-27.7 KK-6, 2, 12.8-13.0 LL-4, 3, 20.4-32.7 LL-5, 3, 12.2-23.7 MM-2, 3, 13.1-15.3 NN-1, 1, 17.3 NN-2, 5, 14.9-23.4 D-67-16 Oct HH-7, 1, 21.5 KK-5, 1, 30.9 KK-6, 2, 62.6-83.4 LL-2, 2, 29.2-32.5 MM-1, 1, 72.1 NN-3, 1, 20.9 PP-1, 3, 20.4-69.5 D-67-8 Jul-Aug MM-3, 2, 18.4-22.9 NN-2, 2, 12.9-13.2 Cantherhines pullus (Ranzani) orange spotted filefish D-67-8 Jul-Aug PP-3, 1, 50.5 D-67-16 Oct FF-5, 1, 29.0 JJ-6, 2, 60.0-65.3 MM-2, 2, 53.0-57.0 PP-3. 1. 55.3 Canthidermis maculatus (Bloch) rough triggerfish D-67-4 May LL-5, 1, 8.3 NN-4, 5, 8.8-10.0 PP-1, 2, 8.1-9.6 D-67-8 Jul-Aug GG-7, 1, 16.8 NN-2, 1, 31.8 NN-3, 1, 32.5 PP-3, 1, 73.5 D-67-16 Oct JJ-6, 1, 32.8 KK-5, 1, 36.9 LL-4, 1, 31.1 PP-1, 1, 24.0 D-68-1 Jan-Feb PP-3, 1, 21.5 Canthidermis sufflamen (Mitchill) ocean triggerfish D-67-4 May NN-3, 7, 10.0-19.6 D-67-16 Oct LL-5, 1, 16.2 Monacanthus ciliatus (Mitchill) fringed filefish D-67-4 May AA-4, 1, 16.0

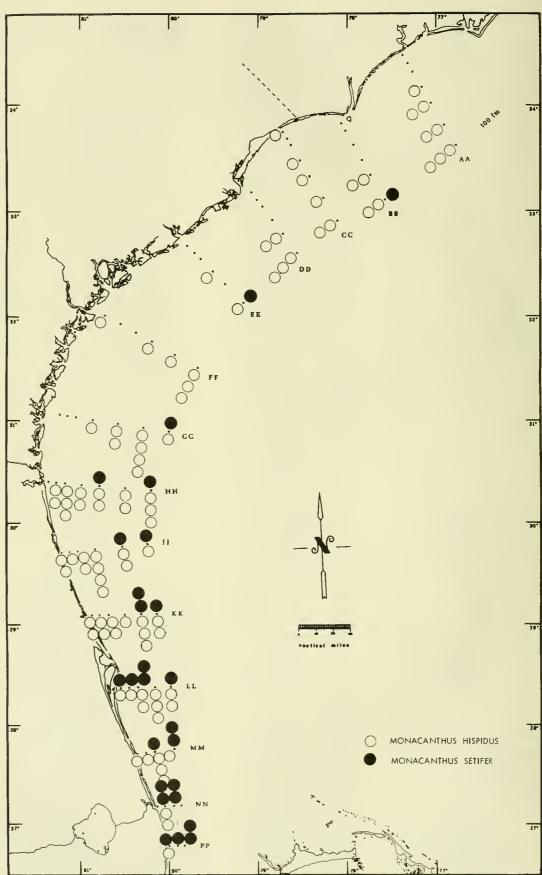
AA-5, 2, 15.5-16.5

CC-7, 3, 17.0-19.0 EE-5, 1, 21.0 EE-6, 10, 17.0-27.0 FF-6, 22, 19.5-34.5 GG-5, 7, 19.7-27.5 GG-6, 6, 20.0-25.0 HH-2, 1, 21.0 HH-5, 5, 22.0-26.0 JJ-4, 1, 23.0 JJ-5, 1, 23.2 KK-3, 2, 20.0-23.1 LL-2, 1, 21.0 LL-4, 4, 20.0-22.0 NN-3, 1, 25.0 NN-4, 1, 25.5 PP-1, 1, 24.6 D-67-8 Jul-Aug BB-5, 20, 17.5-25.0 BB-6, 6, 19.5-29.5 CC-3, 1, 17.3 CC-4, 1, 60.5 CC-6, 5, 18.0-27.5 DD-4, 2, 20.0-20.5 DD-6, 1, 26.5 EE-5, 2, 19.5-19.5 FF-5, 3, 19.0-21.2 FF-6, 1, 22.0 GG-4, 1, 21.7 JJ-1, 1, 18.8 JJ-5, 5, 17.5-22.0 JJ-6, 1, 23.5 KK-4, 1, 25.5 LL-3, 1, 20.0 LL-4, 5, 19.0-23.0 LL-5, 2, 22.0-26.0 NN-2, 3, 12.0-24.5 NN-3, 1, 25.5 D-67-16 Oct AA-5, 2, 21.0-23.0 AA-7, 2, 21.5-24.0 CC-7, 1, 20.5 DD-4, 2, 19.5-20.5 EE-6, 2, 17.0-22.5 FF-5, 1, 25.0 GG-6, 1, 26.0 HH-7, 1, 25.0 JJ-2, 3, 23.0-24.0 JJ-5, 1, 22.0 LL-3, 2, 23.0-34.0 NN-1, 1, 20.8 D-68-1 Jan-Feb GG-6, 1, 21.7 LL-3, 1, 25.5 Monacanthus hispidus (Linnaeus) planehead filefish D-67-4 May AA-5, 3, 21.0-26.0 AA-6, 5, 33.9-167.8 SL AA-7, 1, 47.0 BB-5, 9, 17.0-32.0 BB-6, 2, 14.0-19.0 CC-4, 1, 15.5 CC-7, 1, 15.5 DD-5, 1, 15.5 DD-6, 7, 23.0-38.5

EE-4, 1, 16.0 FF-1, 1, 21.3 FF-4, 2, 19.5-23.0 FF-6, 1, 62.5 GG-4, 1, 35.5 GG-5, 1, 46.7 GG-6, 18, 19.5-32.1 HH-2, 3, 23.0-24.8 HH-3, 9, 44.1-58.0 HH-4, 2, 19.5-29.9 HH-5, 3, 20.0-28.7 HH-6, 8, 20.0-29.9 HH-7, 4, 22.3-30.9 JJ-1, 1, 21.0 JJ-3, 3, 17.2-25.4 JJ-4, 3, 19.5-49.4 JJ-5, 2, 17.5-24.0 KK-1, 1, 24.8 KK-2, 2, 22.1-42.2 KK-3, 1, 21.0 KK-5, 1, 24.6 KK-6, 3, 19.3-20.3 LL-1, 1, 22.3 LL-2, 2, 19.5-20.0 LL-4, 1, 22.6 MM-3, 1, 19.2 D-67-8 Jul-Aug BB-5, 3, 22.5-33.2 BB-6, 14, 20.5-42.9 CC-5, 1, 21.0 CC-6, 3, 21.0-34.0 DD-6, 3, 34.5-75.0 FF-6, 3, 19.5-26.5 GG-6, 2, 25.7-26.0 GG-7, 4, 20.0-28.9 HH-7, 9, 16.9-21.0 JJ-4, 1, 25.2 JJ-5, 3, 11.1-20.0 JJ-6, 2, 21.0-65.3 KK-4, 6, 20.0-44.7 KK-5, 17, 20.5-79.6 KK-6, 3, 26.5-71.8 LL-3, 2, 8.7-11.0 LL-4, 14, 19.5-40.3 LL-5, 18, 20.0-63.0 MM-3, 1, 20.5 NN-2, 2, 20.0-24.6 D-67-16 Oct AA-4, 1, 37.7 AA-5, 13, 19.0-51.7 AA-6, 6, 26.4-49.6 AA-7, 2, 26.5-27.6 CC-1, 1, 23.2 CC-7, 2, 21.5-23.4 DD-6, 2, 19.0-27.1 EE-6, 2, 24.5-26.7 FF-5, 31, 20.4-73.3 FF-6, 1, 22.0 GG-5, 32, 20.0-72.0 GG-6, 1, 63.9 HH-2, 2, 24.8-30.8 HH-3, 15, 21.0-50.8 HH-6, 19, 20.0-55.3 HH-7, 4, 20.0-26.5 JJ-1, 3, 21.0-50.1 JJ-2, 4, 27.0-33.5

JJ-3, 4, 19.0-30.7 JJ-4, 4, 20.0-54.8 KK-1, 6, 20.5-31.7 KK-2, 3, 20.0-50.2 KK-3, 2, 20.0-21.0 KK-5, 1, 21.5 LL-3, 4, 19.5-22.5 LL-5, 1, 20.5 MM-2, 2, 19.5-20.2 MM-3. 1. 21.9 NN-2, 9, 21.0-30.8 PP-1, 1, 24.5 D-68-1 Jan-Feb AA-7, 1, 21.5 DD-5, 2, 19.2-20.2 GG-6, 2, 19.0-21.7 HH-3, 1, 22.5 HH-4, 2, 24.3-34.2 HH-5, 3, 20.0-34.1 JJ-4, 4, 19.5-36.9 LL-5, 4, 21.0-26.2 MM-1, 1, 22.1 MM-3, 4, 20.0-25.0 Monacanthus setifer Bennett pygmy filefish D-67-4 May EE-6, 1, 21.0 D-67-8 Jul-Aug BB-6, 1, 37.3 KK-5, 2, 35.0-39.0 LL-3, 1, 21.0 MM-4, 1, 32.9 NN-2, 1, 28.0 NN-3, 1, 32.7 PP-3, 2, 33.4-38.0 D-67-16 Oct GG-7, 1, 43.4 HH-7, 17, 26.8-40.0 JJ-5, 4, 34.5-41.4 JJ-6, 17, 29.4-50.0 KK-5, 10, 23.0-45.7 KK-6, 16, 34.7-50.2 LL-1, 1, 37.5 LL-2, 1, 39.6 LL-3, 7, 23.0-37.1 LL-5, 1, 50.6 MM-3, 2, 25.2-44.3 MM-4, 1, 33.3 NN-2, 5, 26.5-44.0 NN-3, 4, 22.0-46.5 PP-1, 16, 26.0-52.0 PP-2, 1, 35.2 PP-3, 186, 23.0-53.0 D-68-1 Jan-Feb HH-4, 1, 25.3 Monacanthus tuckeri Bean slender filefish D-67-8 Jul-Aug CC-6, 2, 22.0-25.5 D-68-1 Jan-Feb AA-7, 1, 23.0 Xanthichthys ringens (Linnaeus) sargassum triggerfish D-67-16 Oct

NN-3, 1, 18.3


Unidentified triggerfishes D-67-4 May NN-1, 1, 9.0 D-67-8 Jul-Aug JJ-6, 1, 14.4 NN-4, 1, 9.9 PP-2, 1, 13.4 PP-3, 1, 15.5 Unidentified filefishes D-67-4 May AA-1, 12, 7.0-11.0 SL AA-2, 29, 6.5-13.0 SL AA-3, 77, 5.5-13.0 SL AA-4, 9, 6.0-12.0 SL AA-5, 12, 5.5-13.0 SL AA-7, 1, 11.0 SL BB-6, 1, 8.0 SL CC-3, 2, 5.0-12.0 SL CC-4, 8, 9.5-13.0 SL CC-5, 27, 6.0-13.5 SL CC-6, 6, 9.0-13.5 SL CC-7, 5, 9.0-9.5 SL DD-1, 8, 9.5-14.0 SL DD-3, 1, 13.0 SL DD-5, 1, 13.5 SL DD-6, 19, 10.5-19.5 SL EE-4, 3, 6.5-14.0 SL EE-5, 8, 5.0-12.0 SL EE-6, 41, 6.5-11.0 SL FF-1, 8, 14.2-18.5 FF-2, 5, 13.9-19.4 FF-3, 387, 6.1-18.4 FF-4, 2, 9.5-13.0 FF-5, 9, 11.4-19.0 FF-6, 15, 14.2-19.0 GG-5, 25, 10.5-19.5 GG-6, 16, 13.3-18.0 GG-7, 2, 15.9-18.2 HH-2, 97, 6.7-16.5 HH-4, 117, 7.4-19.0 HH-5, 47, 9.9-19.0 HH-6, 5, 15.5-19.0 JJ-4, 4, 12.2-19.5 JJ-5, 1, 13.2 JJ-6, 1, 12.4 KK-1, 2, 13.5-17.5 KK-3, 1, 16.7 KK-4, 2, 17.1-23.3 LL-1, 3, 13.7-14.2 LL-2, 9, 11.3-19.0 LL-3, 4, 10.3-19.7 LL-4, 3, 10.4-12.0 LL-5. 4. 8.0-18.2 MM-1, 2, 12.1-16.1 NN-2, 3, 14.0-15.1 NN-4, 1, 11.5 PP-2, 2, 13.2-14.9 D-67-8 Jul-Aug AA-4, 1, 12.5 AA-7, 2, 13.3-17.0 BB-5, 5, 13.0-19.0 BB-6, 16, 13.1-19.5 CC-4, 6, 10.3-19.5 CC-5, 1, 13.9 CC-6, 7, 12.9-19.0

CC-7, 5, 12.9-17.8 DD-4, 1, 13.5 DD-6, 2, 13.1-15.1 EE-4, 2, 15.9-16.1 EE-5, 1, 14.1 FF-4, 2, 13.3-14.4 FF-5, 5, 12.7-18.5 FF-6, 5, 12.6-16.4 GG-6, 3, 15.3-19.0 GG-7, 3, 10.8-12.0 JJ-4, 1, 14.8 JJ-6, 3, 12.4-18.9 KK-4, 2, 18.5-19.5 KK-5, 18, 15.0-19.5 KK-6, 6, 11.7-14.0 LL-2, 1, 9.3 LL-3, 1, 24.6 LL-4, 14, 10.3-19.7 LL-5, 44, 7.8-19.5 MM-1, 3, 11.3-12.7 MM-2, 16, 10.8-19.0 MM-3, 23, 10.5-18.5 MM-4, 2, 15.3-15.7 NN-1, 10, 8.2-15.7 NN-2, 30, 6.9-19.0 NN-3, 1, 11.7 NN-4, 2, 10.5-14.3 D-67-16 Oct AA-7, 7, 10.8-15.0 CC-7, 10, 12.9-19.0 DD-4, 1, 12.5 DD-5, 2, 13.3-15.7 EE-5, 1, 15.7 EE-6, 5, 13.4-19.0 FF-2, 2, 19.3-19.9 FF-4, 1, 13.1 FF-5, 20, 10.4-19.7 FF-6, 4, 11.4-19.0 GG-5, 21, 16.8-19.5 GG-6, 7, 15.3-19.5

HH-4, 1, mut. HH-6, 20, 14.5-19.5 HH-7, 3, 14.7-15.7 JJ-2, 1, 17.6 JJ-3, 3, 16.2-17.5 JJ-4, 14, 12.1-19.5 JJ-5, 5, 11.6-16.3 KK-1, 1, 17.3 KK-2, 1, 18.1 KK-3, 1, 17.8 KK-5, 4, 11.9-19.0 LL-1, 1, 16.6 LL-3, 16, 13.3-19.0 LL-5, 1, 18.3 MM-1, 4, 14.7-17.9 MM-2, 1, 17.3 MM-4, 2, 12.5-14.0 NN-1, 21, 14.4-19.3 NN-2, 17, 12.4-19.5 NN-4, 1, 16.5 PP-1, 1, 8.7 PP-3, 1, 20.5 D-68-1 Jan-Feb AA-7, 2, 16.5-17.5 DD-2, 2, 16.4-17.7 DD-4, 1, 13.7 DD-5, 2, 16.0-18.5 DD-6, 4, 16.3-18.6 GG-7, 1, 14.7 HH-5, 2, 13.3-19.0 JJ-4, 4, 14.9-16.0 KK-4, 2, 13.8-17.5 KK-5, 6, 11.5-14.9 KK-6, 1, 14.2 LL-3, 3, 15.7-19.0 LL-5, 8, 11.8-18.5 MM-3, 2, 13.7-19.5 MM-4, 2, 18.4-19.3 NN-4, 1, 15.0 PP-1, 1, 12.7

Our catches of filefishes are consistent with observations made by Berry and Vogele (1961). Monacanthus hispidus is more abundant than M. setifer and M. hispidus is distributed over the entire shelf while M. setifer is more restricted to Gulf Stream waters. Our catches of these species demonstrate these points (Fig. 19). South of Cape Kennedy, where the Gulf Stream is closer to shore, the species occur together. Monacanthus tuckeri is caught so infrequently it might be considered rare in surface waters of the South Atlantic Bight.

Spawning of *Cantherhines pullus* probably occurs south of the Florida Straits judging from the dearth of small (i.e., less than 33.0 mm) individuals in published records. Dooley (1972) took none smaller than 33.0 mm, our smallest was 29.0 mm, and Berry and Vogele (1961, p. 108-109) examined only one smaller than 33.0 mm, a 17.5 mm individual taken from the stomach of a skipjack tuna caught between Grand Bahama and Andros Island. Spawning has been reported in the Caribbean (Munro et al. 1973) and in Figure 19.—Occurrence of two species of Monacanthus during four survey cruises; each symbol represents an occurrence in one of the four cruises.

the waters around the Virgin Islands and Puerto Rico (Randall 1964).

Most of the unidentified filefish resemble *M. hispidus*, but at small sizes we were unable to determine the nature of scale spination, an important identifying character (Berry and Vogele 1961). Because of overlapping meristic characters and relative body depths in the four species of *Monacanthus*, these specimens were not identified.

Most specimens of *Balistes capriscus* were heavily infested with parasitic copepods (*Caligus* sp.) attached to the bases of the vertical fins. No other balistid species was so affected.

OSTRACIIDAE

Unidentified	D-67-16 Oct
D-67-4 May	PP-3, 1, 8.9
CC-5, 1, 7.9	<i>D-68-1</i> Jan-Feb
	MM-4, 1, 6.6
	PP-3, 1, 9.7

There are few records of small ostraciids in the literature. Fowler (1945) mentioned three specimens, one of 20 mm from Key West, one of 23 mm from New Jersey, and one of 21 mm from Massachusetts. The latter two records indicate that the Gulf Stream occasionally carries developing young to the north. Because postlarval ostraciids resemble the bladders of sargassum in size, shape, and color, more specimens may have been captured and overlooked during our survey.

TETRAODONTIDAE

Sphoeroides sp.	KK-6, 1, 16.5
D-67-4 May	LL-2, 2, 7.1-12.1
AA-1, 5, 10.1-11.3	LL-3, 2, 11.9-12.9
AA-2, 10, 7.4-13.0	LL-3, 2, 11.9-12.9 LL-4, 3, 10.3-13.9
AA-2, 10, 7.4-13.0 AA-3, 10, 9.3-18.8	, ,
.,	LL-5, 2, 13.0-16.6
AA-4, 4, 6.7-11.6	MM-1, 1, 8.9
AA-5, 5, 7.4-13.8	MM-2, 1, 8.3
AA-6, 1, 8.9	NN-1, 1, 12.5
CC-1, 3, 11.0-15.9	NN-3, 8, 5.9-8.8
CC-3, 1, 15.9	NN-4, 4, 9.9-12.0
CC-4, 5, 8.7-10.3	PP-1, 2, 6.2-10.0
CC-5, 12, 6.1-19.9	PP-2, 1, 11.0
CC-6, 4, 8.6-15.5	D-67-8 Jul-Aug
CC-7, 3, 5.4-9.0	AA-4, 1, 6.4
DD-3, 1, 10.9	BB-4, 1, 10.4
EE-6, 6, 5.7-14.9	EE-5, 2, 8.9-10.7
FF-2, 3, 11.3-17.9	FF-4, 2, 8.5-10.5
FF-3, 8, 7.0-12.0	FF-5, 1, 11.8
FF-4, 5, 5.7-17.9	GG-5, 1, 10.6
FF-5, 2, 10.9-12.2	HH-5, 2, 7.3-7.4
HH-2, 2, 14.7-15.1	JJ-5, 1, 13.3
HH-4, 2, 13.5-14.3	LL-4, 4, 7.7-10.5
HH-5, 8, 13.2-16.5	MM-3, 1, 9.0
HH-6, 3, 13.0-15.7	NN-4, 1, 6.6
JJ-2, 13, 11.1-18.2	D-67-16 Oct
JJ-3, 55, 8.3-14.6	AA-4, 3, 17.0-20.6
JJ-4, 15, 8.8-16.5	AA-5, 5, 12.4-18.8
KK-3, 1, 15.0	DD-4, 1, 15.2
, _,,	

DD-5, 15, 8.6-18.2	NN-4, 4, 6.8-12.5
FF-3, 1, 18.9	D-68-1 Jan-Feb
FF-5, 5, 14.8-21.4	AA-5, 2, 8.1-14.9
GG-5, 2, 10.0-18.2	AA-7, 3, 8.5-9.5
HH-3, 2, 9.4-9.6	DD-5, 1, 10.0
JJ-3, 1, 9.6	DD-6, 2, 13.2-13.3
JJ-4, 1, 13.4	FF-5, 1, 6.7
JJ-5, 1, 14.5	GG-5, 2, 6.9-8.0
KK-1, 1, 15.9	KK-4, 2, 12.5-13.0
LL-4, 1, 9.4	MM-1, 1, 14.4
LL-5, 3, 9.6-16.4	MM-2, 1, 16.5
NN-1, 1, 14.1	MM-3, 8, 12.0-16.0
NN-2, 3, 7.7-12.3	PP-2, 4, 8.8-13.3
NN-3, 2, 10.6-11.4	PP-3, 1, 7.5

Of all fish species caught, small puffers were the most markedly diurnal in occurrence (Table 9). It appears that these fishes engage in a diel vertical migration, but the extent of the nocturnal descent is unknown.

Table 9.-Diel variations in catch of juvenile tetraodontids.

	Dawn	Day	Dusk	Night
Number of fish	19	235	42	9
Number of occurrences	9	56	9	4

DIODONTIDAE	FF-4, 1, mut.
	LL-2, 1, mut.
Diodon holocanthus Linnaeus	NN-3, 1, mut.
balloonfish	D-67-8 Jul-Aug
D-67-8 Jul-Aug	GG-6, 2, 7.6-7.8
JJ-5, 1, 70.1	KK-6, 1, mut.
Diodon hystrix Linnaeus	MM-2, 4, 4.5-27.2
porcupinefish	NN-2, 2, 22.0-26.2
D-67-8 Jul-Aug	D-67-16 Oct
NN-3, 1, 84.5	HH-7, 3, mut11.0
	LL-4, 1, 11.2
UNIDENTIFIED	NN-4, 1, 8.6
	<i>D-68-1</i> Jan-Feb
D-67-4 May	AA-2, 1, 15.8
BB-2, 1, mut.	AA-7, 9, 7.1-9.5
BB-5, 1, mut.	DD-2, 1, mut.
CC-3, 1, mut.	DD-5, 1, 14.8
CC-5, 3, mut.	EE-4, 1, 7.3
CC-6, 2, mut.	GG-2, 1, 13.0
CC-7, 1, 14.8	NN-1, 1, mut.
DD-6, 2, 8.9-11.0	NN-2, 1, 25.0
EE-6, 2, mut.	PP-2, 1, mut.

ACKNOWLEDGMENTS

The author thanks Peter L. Berrien, Arthur W. Kendall, Jr., John D. Sibunka, and W. G. Smith for their participation in the cruises; Cindy deGorgue for her assistance in sorting, identifying, counting, and measuring; Catherine Noonan for typing the list of fishes; Alyce Wells and Cindy deGorgue for preparing some of the figures; and Lionel A. Walford for carefully reviewing the manuscript and offering suggestions for its improvement.

LITERATURE CITED

ADAMS, J. A.

- 1960. A contribution to the biology and postlarval development of the Sargassum fish, *Histrio histrio* (Linnaeus), with a discussion of the *Sargassum* complex. Bull. Mar. Sci. Gulf Caribb. 10:55-82.
- AHLSTROM, E. H.
 - 1971. Kinds and abundance of fish larvae in the eastern tropical Pacific, based on collections made on EASTROPAC I. Fish. Bull., U.S. 69:3-77.
- ANDERSON, W. D., JR.
 - 1967. Field guide to the snappers (Lutjanidae) of the western Atlantic. U.S. Fish Wildl. Serv., Circ. 252, 14 p.
- ANDERSON, W. W.
 - 1957. Early development, spawning, growth, and occurrence of the silver mullet (*Mugil curema*) along the South Atlantic coast of the United States. U.S. Fish Wildl. Serv., Fish. Bull. 57:397-414.
 - 1958. Larval development, growth, and spawning of striped mullet (*Mugil cephalus*) along the South Atlantic coast of the United States. U.S. Fish Wildl. Serv., Fish. Bull. 58: 501-519.
 - 1968. Fishes taken during shrimp trawling along the south Atlantic coast of the United States, 1931-35. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 570, 60 p.

- 1965. Biological-statistical census of the species entering fisheries in the Cape Canaveral area. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 514, 79 p.
- ANDERSON, W. W., J. W. GEHRINGER, and F. H. BERRY. 1966. Field guide to the Synodontidae (lizardfishes) of the western Atlantic Ocean. U.S. Fish Wildl. Serv., Circ. 245, 12 p.
- ARATA, G. F., JR.
 - 1954. A contribution to the life history of the swordfish, *Xiphias gladius* Linnaeus, from the South Atlantic coast of the United States and the Gulf of Mexico. Bull. Mar. Sci. Gulf Caribb. 4:183-243.
- BAILEY, R. M., J. E. FITCH, E. S. HERALD, E. A. LACHNER,
 - C. C. LINDSEY, C. R. ROBINS, and W. B. SCOTT.
 - 1970. A list of common and scientific names of fishes from the United States and Canada. 3rd ed. Am. Fish. Soc., Spec. Publ. 6, 150 p.
- BERRY, F. H.
 - 1959. Young jack crevalles (*Caranx* species) off the southeastern Atlantic coast of the United States. U.S. Fish Wildl. Serv., Fish. Bull. 59:417-535.
- BERRY, F. H., and L. E. VOGELE. 1961. Filefishes (Monacanthidae) of the western North Atlantic. U.S. Fish Wildl. Serv., Fish. Bull. 61:61-109.
- BLACHE, J., J. CADENAT, and A. STAUCH.
 - 1970. Cles de determination des poissons de mer signales dans l'atlantique oriental (entre le 20^e parallele nord et le 15^e parallele sud). O.R.S.T.O.M., Faune Trop. 18:1-479.
- BÖHLKE, J. E., and C. C. G. CHAPLIN.
 - 1968. Fishes of the Bahamas and adjacent tropical waters. Livingston Publ. Co., Wynnwood, Pa., 771 p.
- BREDER, C. M., JR.
 - 1938. A contribution to the life histories of Atlantic Ocean flyingfishes. Bull. Bingham Oceanogr. Collect., Yale Univ. 6, 126 p.
 - 1967. On the survival value of fish schools. Zoologica 52: 25-40.

BRIGGS, J. C.

- 1958. A list of Florida fishes and their distribution. Bull. Fla. State Mus., Biol. Sci. 2:223-318.
- BRUUN, A. F.
 - 1935. Flying-fishes (*Exocoetidae*) of the Atlantic, systematic and biological studies. Dana Rep., Carlsberg Found. 6, 106 p.
- BULLIS, H. R., JR., and J. R. THOMPSON.
 - 1965. Collections by the exploratory fishing vessels Oregon, Silver Bay, Combat, and Pelican made during 1956 to 1960 in the southwestern North Atlantic. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 510, 130 p.
- CALDWELL, D. K.
 - 1962. Development and distribution of the short bigeye *Pseudopriacanthus altus* (Gill) in the western North Atlantic. U.S. Fish Wildl. Serv., Fish. Bull. 62:103-150.
- CALDWELL, M. C.
 - 1962. Development and distribution of larval and juvenile fishes of the family Mullidae of the western North Atlantic. U.S. Fish Wildl. Serv., Fish. Bull. 62:403-457.
- CLARK, J., W. G. SMITH, A. W. KENDALL, JR., and M. P. FAHAY.
 - 1969. Studies of estuarine dependence of Atlantic coastal fishes. Data Report I: Northern section, Cape Cod to Cape Lookout. R.V. *Dolphin* cruises 1965-66: Zooplankton volumes, midwater trawl collections, temperatures and salinities. U.S. Bur. Sport Fish. Wildl., Tech. Pap. 28, 132 p.
 - 1970. Studies of estuarine dependence of Atlantic coastal fishes. Data Report II: Southern section, New River Inlet, N.C., to Palm Beach, Fla. R. V. *Dolphin* cruises 1967-68: Zooplankton volumes, surface-meter net collections, temperatures, and salinities. U.S. Bur. Sport Fish. Wildl., Tech. Pap. 59, 97 p.
- DE SYLVA, D. P.
 - 1963. Systematics and life history of the great barracuda, Sphyraena barracuda (Walbaum). Stud. Trop. Oceanogr. (Miami) 1, 179 p.
- DOOLEY, J. K.
 - 1972. Fishes associated with the pelagic sargassum complex, with a discussion of the sargassum community. Contrib. Mar. Sci., Univ. Texas 16:1-32.
- ELDRED, B., and W. G. LYONS.
 - 1966. Larval ladyfish, *Elops saurus* Linnaeus 1766, (Elopidae) in Florida and adjacent waters. Fla. Board Conserv., Leafl. Ser. 4(2), 6 p.
- FIELDS, H. M.
 - 1962. Pompanos (*Trachinotus* spp.) of south Atlantic coast of the United States. U.S. Fish Wildl. Serv., Fish. Bull. 62: 189-222.
- FOWLER, H. W.
 - 1945. A study of the fishes of the southern Piedmont and coastal plain. Acad. Nat. Sci. Phila. Monogr. 7:408 p., 313 figs.
- GEHRINGER, J. W.
 - 1956. Observations on the development of the Atlantic sailfish *Istiophorus americanus* (Cuvier), with notes on an unidentified species of istiophorid. U.S. Fish Wildl. Serv., Fish. Bull. 57:139-171.
 - 1959. Early development and metamorphosis of the tenpounder *Elops saurus* Linnaeus. U.S. Fish Wildl. Serv., Fish. Bull. 59:619-647.
- GREENWOOD, P. H., D. E. ROSEN, S. H. WEITZMAN, and G. S. MYERS.
 - 1966. Phyletic studies of teleostean fishes, with a provisional

ANDERSON, W. W., and J. W. GEHRINGER.

classification of living forms. Bull. Am. Mus. Nat. Hist. 131:339-455.

HAEDRICH, R. L.

1967. The stromateoid fishes: Systematics and a classification. Bull. Mus. Comp. Zool., Harv. Univ. 135:31-139.

JUNE, F. C.

1958. Variation in meristic characters of young Atlantic menhaden, *Brevoortia tyrannus*. Rapp. P.-V. Réun. Cons. Perm. Int. Explor. Mer 143(2):26-35.

LEONARD, S. B.

1971. Larvae and young of the western North Atlantic Bothid flatfishes *Etropus microstomus* (Gill) and *Citharichthys arctifrons* Goode in the Chesapeake Bight. Ph.D. Thesis, College of William and Mary, Williamsburg, 198 p.

MATHER, F. J., III.

1958. A preliminary review of the amberjacks, genus *Seriola*, of the western Atlantic. Proc. 3rd Int. Game Fish Conf. 1958, 13 p.

1959. A contribution to the life history of the squirrel fish Holocentrus vexillarius Poey. Bull. Mar. Sci. Gulf Caribb. 9:174-221.

McKENNEY, T. W., E. C. ALEXANDER, and G. L. VOSS.

- 1958. Early development and larval distribution of the carangid fish, *Caranx crysos* (Mitchill). Bull. Mar. Sci. Gulf Caribb. 8:167-200.
- MILLER, G. L., and S. C. JORGENSON.
- 1973. Meristic characters of some marine fishes of the western Atlantic Ocean. Fish. Bull., U.S. 71:301-312.

MOORE, D.

- 1962. Development, distribution, and comparison of rudder fishes *Kyphosus sectatrix* (Linnaeus) and *K. incisor* (Cuvier) in the western North Atlantic. U.S. Fish Wildl. Serv., Fish. Bull. 61:451-480.
- MONRO, J. L., V. C. GAUT, R. THOMPSON, and P. H. REE-SON.

1973. The spawning seasons of Caribbean reef fishes. J. Fish Biol. 5:69-84.

OKIYAMA, M.

1970. Studies on the early life history of the rainbow runner, *Elagatis bipinnulatus* (Quoy & Gaimard) in the Indo-Pacific Oceans. Bull. Far Seas Fish. Res. Lab. (Shimizu) 3:167-186. RANDALL, J. E.

1964. A revision of the filefish genera Amanses and Cantherhines. Copeia 1964:331-361.

SMITH, D. G.

1969. Xenocongrid eel larvae in the western North Atlantic. Bull. Mar. Sci. 19:377-408.

STAIGER, J. C.

1965. Atlantic flyingfishes of the genus *Cypselurus*, with descriptions of the juveniles. Bull. Mar. Sci. 15:672-725.

STRUHSAKER, P.

1969. Demersal fish resources: Composition, distribution, and commercial potential of the Continental Shelf stocks off Southeastern United States. U.S. Fish Wildl. Serv., Fish. Ind. Res. 4:261-300.

SUTHERLAND, D. F.

1963. Variation in vertebral numbers of juvenile Atlantic menhaden. U.S. Fish Wildl. Serv., Spec. Sci. Rep. Fish. 435, 21 p.

TÁNING, A. V.

1955. On the breeding areas of the swordfish (*Xiphias*) Deep-Sea Res. (Suppl.) 3:438-450.

UEYANAGI, S.

- 1963. Methods for identification and discrimination of the larvae of five istiophorid species distributing in the Indo-Pacific. [In Jap., Engl. synop.] Rep. Nankai Reg. Fish. Res. Lab. 17:137-151.
- U.S. DEPARTMENT of COMMERCE, COAST and GEODETIC SURVEY.

1967. Tide tables, high and low water predictions, east Coast of North and South America, including Greenland, 289 p.1968. Tide tables, high and low water predictions, east Coast of North and South America, including Greenland, 289 p.

VOSS, G. L.

1953. A contribution to the life history and biology of the sailfish, *Istiophorus americanus* Cuv. and Val., in Florida waters. Bull. Mar. Sci. Gulf Caribb. 3:206-240.

VOSS, N. A.

1954. The postlarval development of the fishes of the family Gempylidae from the Florida Current. I. Nesiarchus Johnson and Gempylus Cuv. and Val. Bull. Mar. Sci. Gulf Caribb. 4:120-159.

McKENNEY, T. W.

APPENDIX TABLE

Station list including dates, times, observed physical conditions, and number of categories caught, including all fishes whether identified to species, identified to a higher taxon, or not identified.

Cruise 0-	67-4							Cruise 0-	67-8	T .					
Station	Date 1967 D M	Tow Start Time (EDST)	Light Condition	Water Oepth (M)	Surface Temp (°C)	Surface Sal (⁰ /00)	Number of Categories Caught	Station	Date 1967 D M	Tow Start Time (EDST)	Light Condition	Water Depth (M)	Surface Temp (°C)	Surface Sal (°/oo)	Number of Categories Caught
AA-1	15 5	2135	Night	10	19.2	36.10	9	AA-1 AA-2	18 18	1154 1243	Day Day	13 16	25.5 25.7	34.90 35.32	1
AA - 2	15 5	2006	Dusk	15	18.8	36.10	10	AA - 3	1 8	1340	Day	21	25.8	34.84	
AA - 3	15 5	1903 1850	Ousk Oay	20 26	18.7 19.6	36.50 36.70	6 8	AA-4	18	0627	0.awn	27	26.6	34,95	3
AA - 4 AA - 5	15 S 15 S	1616	Oay	30	21.7	37.40	11	AA - 5 AA - 6	18	0501 0057	Dawn Night	32 41	26.8 25.5	34.93 35.07	4
AA - 6	15 S	1337	Oay	39	22.0	36.70	7 2	AA - 7	31 7	2308	Night	158	28.5	35.76	11
AA - 7 88 - 1	15 5 14 5	1111 2226	Day Night	175 13	23.3	36.60 35.30	-	88-1 88-2	31 7 31 7	0703 0617	Dawn Dawn	13	27.0 25.6	34.24 34.92	1
88-2	14 5	2329	Night	12	20.2	35.40	3	88-3	31 7	1112	Day	19	25.7	34.55	1
88-3	15 S 15 S	0054 0223	Night Night	19 27	19.9 20.9	35.70 36.60	1 5	88-4	31 7	1234	Day	27	25.7	33.84	6
88-4 88-5	15 5	0352	Night	28	21.8	36.80	6	88-5 88-6	31 7 31 7	1454 1642	Day Oay	31 159	27.5 28.0	35.14 35.51	10 13
88-6	15 5	0549	Dawn	157 10	24.2 20.8	36.7D 37.60	4	CC+1	31 7	01 30	Night	12	25.6	35.03	1
CC-1 CC-2	14 5 14 5	1806 1715	Day Oay	13	20.5	35.60	-	CC-2 CC-3	31 7 31 7	0217 0305	Night Night	15 17	24.5 24.7	35.07 34.85	-
CC-3	14 5	162D	Day	17	20.9	35.70	5 7	CC-4	30 7	2006	Dusk	19	25.2	34.60	2
CC-4 CC-5	14 5 14 5	1501 1337	0ay Day	20 25	21.1 21.3	35.80 36.40	9	CC-5 CC-6	30 7 30 7	1840 1655	0ay 0ay	25 32	25.1 27.5	34.64 35.84	3 12
CC-6	14 5	1058	Day	31	21.6	36.80	10	CC-7	30 7	1516	Day	124	28.7	36,10	3
CC-7 00-1	14 5 13 5	0853 2103	Day Dusk	124 10	21.3 21.7	37.20 33.90	15 7	00-1 00-2	30 7 30 7	0253 0346	Night	11 15	24.8	35.06	3
00-2	13 5	2201	Night	13	20.8	35,80	5	00-2	30 7	0439	Night Night	15	24,4	35.32 34.72	3
00-3	13 5	2335	Night	16 28	20.9 22.1	35.70 36.70	7	00-4	30 7	0600	0.a.wn	27	27.1	33.94	2
D0-5	14 5 14 5	0108 0230	Night Night	34	21.9	37.90	8	00-5 00-6	30 7 30 7	0933 1145	0ay Day	33 75	27.1	34.66 35.97	-
0D - 6	14 5	0457	Dawn	160	22.2	37.80	14	EE-1	29 7	1350	Day	14	28.2	32,96	-
EE+1 EE-2	13 S 13 S	0409 0307	Night Níght	11 13	21,3 21,2	35.20 35.60	2	EE-2	29 7 29 7	1451	Day	15	26.7	34.60	-
EE-3	13 5	0206	Night	16	20.9	35.70	4	EE-3 EE-4	29 7 28 7	1542 1442	Day Day	18 26	26.8 27.5	34.55 34.22	- 3
EE-4	13 S 13 S	0040 1149	Night Day	25 37	21.1 21.5	36,70 37,40	6 8	EE-5	28 7	1317	Day	37	27.7	34.48	6
EE-5 EE-6	13 5 13 5	1431	Day	108	22.1	37.30	12	EE-6 FF-1	28 7 27 7	1128 2054	Day Dusk	105	27.2 28.1	35.05 31.91	2
FF-1	12 5	1830	Day	11	23.3	31.00 36.00	6	FF-2	27 7	2212	Night	15	27.9	34.46	7
FF-2 FF-3	12 5 12 5	1711 1534	Day Day	16 22	22.3 21.8	36.60	8	FF-3 FF-4	28 7 28 7	0200 0336	Night Night	21 31	27.2 27.2	34.5D 35.19	1
FF-4	12 5	1406	Day	29	21.3	37.40	10 5	FF-5	28 7	0526	Dawn	40	27.7	35.43	5
FF-5 FF-6	12 5 12 5	1111 0849	0ay Day	42 139	21.3 21.7	37.60 37.80	4	FF-6	28 7	0722	0awn	111	26.8	35.46	10
GG-1	11 5	1728	Oay	9	22.9	35.10	-	GG-1 GG-2	27 7 27 7	1311 1208	0ay Day	13 14	27.3 26.2	34.03 34.88	-
GG - 2 GG - 3	11 5 11 5	1839 1947	Day Dusk	13 16	22.7 22.1	35.30 35.40	-	GG - 3	27 7	1114	Oay	17	25.5	34.70	-
GG-4	11 5	2125	Night	25	22.3	35.88	2	GG-4 GG-5	27 7 27 7	0814 D620	0ay 0awn	25 30	26.8 26.8	34.99 35.39	2 4
GG-5 GG-6	11 5 12 5	2321 0200	Night Night	32 39	22.3 22.5	36.15 37.63	7 6	GG - 6	27 7	0431	Night	38	26.4	35.49	15
GG=7	12 5	0433	Night	157	24.6	38.00	3	GG - 7 NN - 1	27 7 26 7	0231 1053	Night Day	146 12	27.2 25.1	35.52 33,54	13
HH-1	10 5	1353	Day	13 17	23.4 23.2	34.96 35.58	1 10	NH-2	26 7	0958	Oay	15	25.8	34.5D	-
HH - 2 HH - 3	10 5 10 5	1252 1158	Oay Oay	21	23.3	35.97	2	HH - 3 HH - 4	26 7 26 7	0907 1526	Day Day	18 25	25.8 26.5	35.07 34.02	1
HH-4	10 5	1033	Day	26	22.2	36.31	12	NN-5	26 7	1655	Day	31	26,5	34.84	3
ым-5 нн-6	10 5 10 5	0910 0642	Day Oawn	31 36	22.3 22.5	36.49 36.88	7	НН - 6 НН - 7	26 7 26 7	2103 2318	Ousk Night	36 126	27.1	35.82 35.63	1
NH-7	10 5	0349	Night	113	24.6	37.70	8	JJ-1	26 7	0333	Night	17	22.3	34.94	2
JJ-1 JJ-2	95 95	1518		15	23.9	37.15	4	JJ-2	26 7 26 7	0423 0513	Night	18	24.2 25.5	36.00 35.06	2
JJ-3	95	1619 1713		17 19	23.9 23.9	37.32 37.33	3 12	JJ - 3 JJ - 4	25 7	2139	Dawn Night	21 25	25.6	35.36	5
JJ-4 JJ-5	95 95	1930		19	23.9	37.20	6	JJ-S	25 7	1952	Dusk	36	25.6	35.30 35.00	13 10
JJ-6	9 5 10 5	2134	Night Night	36 183	23.2	36.96 37.25	7	JJ-6 KK-1	26 7 22 7	1713 1514	Oay Day	189 17	28.5 26.6	34.30	-
KK - 1	95	1050	Oay	16	23.9	37.25	5	KK - 2	22 7	1637	Day	19	27.0	34.43	-
KK = 2 KK = 3	95 95	0942 0810		17 20	23.8 23.9	37.15 36.88	6	КК-3 КК-4	22 7 22 7	1749 1917	0ay Dusk	21 24	26.4 27.2	33,69 35,41	- 3
KK - 4	95	0643	Dawn	26	22.4	39,40	2	KK - 5	22 7	2045	Dusk	36	27.7	35.53	14
КК - 5 КК - 6	95 95	0414		40 102	23.7 25.3	37.70 37.70	5	KK - 6 LL - 1	22 7 23 7	2309 1545	Night Day	105 12	28.2 27.3	35.68 33.52	19
LL-1	8 5	1516	Day	12	24.2	37.50	6	LL-2	23 7	1018	Day	13	26.2	34.70	1
LL-2 LL-3	85 85			14 21	25.2 24.5	37.40 37.00	13 5	LL-3 LL-4	23 7 23 7	0910 0700	0ay 0awn	23 45	25.5 26.5	34.61 35.53	5 11
LL-4	85	1822	Day	42	24.4	38.00	10	LL-5	23 7	05 39	0.a.wn	170	26.6	35.53	21
LL-5 MM-1	8 5 8 5	2040 0657	0usk Dawn	42	25.8	36,90	19	MM - 1 MM - 2	23 7 23 7	2233 2146	Night Night	12 13	25.5 26.9	35.40 35.13	6 14
MM = 2	85	0746	Day	12 14	22.4 21.6	37.00 37.00	6 3	MM - 3	23 7	2022	Dusk	23	28.2	35.65	11
MM = 3 MM = 4	8 5	0842	Day	22	23.1	37.00	6	MM - 4	24 7	0455	Night	162	29.1 28.2	36.12 34.77	7 8
NN - 1	8 5 7 5	0227 1903	Night Duak	155 12	25.6 25.4	37.20 37.30	6 3	NN - 1 NN - 2	24 7 24 7	1027 1123	Day Day	13 39	28.2	35.33	17
NN - 2	75	1757	Oay	55	25.2	37.50	12	NN - 3	24 7	1238	Day	92	29.4	35.44	15
NN - 3 NN - 4	7 S 7 S	1650 1550		175 305	25.7 25.4	37.00 37.10	21 22	NN - 4 PP - 1	24 7 24 7	1411 2204	Day Night	300 70	29.3 28.5	34.54 35.32	6
PP-1	75	0858	Day	64	25.0	36.80	9	PP - 2	24 7	2308	Night	243	29.4	35.76	4
PP - 2 PP - 3	75 75	1105 1305		227 338	25.3 26.1	37.60 37.40	10	PP-3	25 7	0443	Night	346	29.2	35.50	9

Cruise D-67-18

Tow

Cruise D-68-1

-

	Date	Tow Start	Light	Water	Surface	Surface	Number of		Oate	Tow Start	1.1.1.1.1	11			
Station	1967 D M	Time (EDST)	Condition	Depth	Temp	Se1	Categories	Station	1967	Time	Light Condition	Water Depth	Surface Temp	Surface Sal	Number of Categories
	UM	(EDSI)		(M)	(°C)	(0/00)	Caught		мa	(EDST)		(M)	(°C)	(°/00)	Caught
AA-1	19 10	1045	Day	11	21.3	33.89	~	AA-1 AA-2	27 1 27 1	0434 0540	Night	11	7.8	34.13	2
AA-2 AA-3	19 10 19 10	1212 1314	Day Day	17 21	21.7 22.2	35.82 34.50	2	AA - 3	27 1	0650	Night Dawn	17 20	11.3	35.98 36.02	7
AA-4	19 10	1439	Day	27	22.9	35,00	4	AA - 4	27 1	0817	Oawn	27	13.5	36.12	9
AA-5	19 10	1613	Day	32	24.2	35.23	6	AA - 5 AA - 6	27 1 27 1	0948 1320	Day Day	31 39	17.9	36.65	8
AA-6 AA-7	19 10 19 10	1848 2136	Dusk Night	38 167	24.5 26.2	35.53 35.35	5	AA-7	27 1	1527	Day	151	19.9 22.8	36.96	15
88-1	20 10	1158	Day	13	20.8	34,29	3	88-1	28 1	0858	Dawn	13	8.0	30,99	5
88-2	20 10 20 10	1101	Day	12	20,8	34.68	1	88~2 88-3	28 1 28 1	0806 0640	Dawn Dawn	13 19	8.0 11.0	33.85 36.21	5
88-3 88-4	20 10	09 38 0806	Day Dawn	18 27	20,9 23 .1	34.94 35.35	2	88-4	28 1	0320	Night	27	15.5	36.41	5
88-5	20 10	0638	Dawn	30	24.1	35,91	ī	88-5 88-6	28 1 27 1	0138	Night	29	18.1	36.38	4
88-6 CC-1	20 10 20 10	0313 1541	Night Dav	175 10	24.9 20.9	35.63 34.52	-	CC-1	28 1	2313 1647	Night Day	149 10	23.0 9.4	36.45 31.35	-
CC-2	20 10	1639	Day	13	20.9	34.74	2	CC-2	28 1	1559	Day	14	9.1	34.51	3
CC-3	20 10	1744	Dusk	16	21.7	35.28	1	CC-3 CC-4	28 1 28 1	1505 2017	Day	17	9.9	35.77	5
CC-4 CC-5	20 10 20 10	1910 2038	Dusk Night	20 25	21.9 22,5	35.92 35.41	2	CC-5	28 1	2254	Night Night	20 24	14.3 16.7	36.59 36.52	4
CC-6	20 10	2257	Night	31	23.3	35.96	5	CC-6	29 1	0035	Night	32	16.1	36.37	3
CC-7	21 10	0104	Night	134	24.6	35.88	6	CC-7 DD-1	29 1 29 1	0432 1715	Night	111	23.0	36.40	-
00-1 DD-2	21 10 21 10	1355 1253	Day Day	9 13	20.9 21.2	34.17 34.30	1	DD-2	29 1	1624	Dusk Day	11 13	7.4	16.68 28,35	5
DD-3	21 10	1152	Day	16	21.7	34.88	2	DD-3	29 1	1533	Day	15	11.6	33.15	4
DD-4 DD-5	21 10 21 10	1023 0856	0ay Day	27 33	23.5 24.3	35.23	7	DD-4 DD-5	29 1 29 1	1320	Day Day	28 33	16.8 20.1	36.31 36.00	2
DD-6	21 10	0544	Night	164	24.5	36.28 35.58	8	DO-6	29 1	0800	Dawn	142	22,8	36.13	18
EE-1	21 10	1900	Dusk	11	20.8	30,80	1	EE-1	30 1	0102	Night	11	8,4	29.37	5
EE-2 EE-3	21 10 21 10	2008 2108	Night Night	15 17	21.6 21.9	34.11 34.35	5	EE-2 EE-3	29 1 29 1	2359 2302	Night Night	13 16	9.7 15.2	34.36 36.06	5
EE-4	21 1D	2337	Night	25	23,1	35.75	-	EE-4	30 1	0455	Night	24	17.9	36.41	8
EE-5 EE-6	22 10	0101	Night	37	24.6	35.56	3	EE-5 EE-6	30 1 30 1	0625	Night	37	21.8	36.21	7
FF-1	22 10 22 10	0340 1953	Night Night	108 12	26.0 21.4	35, 30 33, 10	9	FF-1	31 1	1005 0210	Day Night	100 13	23.0 10.4	36.35 33.89	5
FF-2	22 10	1834	Dusk	15	22.2	34.37	1	FF - 2	30 1	2303	Night	17	11.6	35.17	3
FF-3 FF-4	22 10 22 10	1659 1530	Day Day	19 30	22.1	34.57 35.24	1	FF-3 FF-4	30 1 30 1	2139 2016	Night Night	20 32	15.6 17.9	36.28	3
FF-5	22 10	1156	Day	42	24.5	35.18	14	FF-5	30 1	1754	Dusk	41	19.9	36.00 35.91	13
FF-6	22 10	0915	Day	103	26.3	35.11	9	FF-6	30 1	1422	Day	141	21.5	35.57	4
GG-1 GG-2	23 10 23 10	0150 0250	Night Night	11 15	21.7	32.78 33.62	-	GG - 1 GG - 2	31 1 31 1	0918 0831	Day Dawn	11	10.5 10.7	31.05 33.66	3
GG-3	23 10	0442	Night	17	22.4	34.45	2	GG - 3	31 1	0743	Dawn	16	11.1	34.42	4
GG-4 GG-5	23 10 23 10	0615	Dawn	23 30	22.9	34.77	5	GG - 4 GG - 5	31 1 31 1	1329 1510	Day	25	14.6	36.24	3
GG-6	23 10	0821 1115	Dawn Day	38	24.1	35.28 35.13	8 4	GG - 6	31 1	1849	Day Dusk	30 38	18.5 20.6	36.18 36.01	7
GG-7	23 10	1433	Day	132	26.0	35.02	4	GG - 7	31 1	2102	Night	134	23.0	36.00	4
HH-1	24 10 24 10	06.30 0528	Dawn Night	12 14	22.1 22.6	30.25 33.93	- 2	MH-1 NH-2	1 2 1 2	1158 1052	Day Day	14 17	12.1	32,66 34,35	4
НН - 3	24 10	0428	Night	18	22.2	34.57	4	HH-3	1 2	1000	Day	2D	12.8	34.59	4
HH-4	24 10	0301	Night	26	23.6	35.38	5	ฟฟ-4 ฟฟ-5	1 2	0853	Dawn	26	15.2	35.90	7
NN - 5 NN - 6	24 10 23 10	0133 2234	Night Night	32 38	24.1	35.34 35.25	- 20	HPM-6	1 2	0357	Night Night	32 36	19.2 20.0	36.18 36.29	9
HH - 7	23 10	2002	Night	178	25.7	35,21	15	NH-7	1 2	0220	Night	100	22.1	36.10	2
JJ-1 JJ-2	24 10 24 10	1117 1215	Day	15 19	22.7	33.00	2	JJ-1 JJ-2	1 2 1 2	1840 1932	Dusk Dusk	15 19	14.1 13.4	33.92 34.40	- 2
JJ-3	24 10	1329	Day Day	22	23.2	34.07 34.40	6 4	JJ-3	1 2	2024	Night	20	14.6	35.27	4
JJ-4	24 10	1500	Day	24	24.0	35.22	5	JJ-4 JJ-5	2222	0107 0324	Night	24 34	18.5	37.14	8
JJ-5 JJ-6	24 10 24 10	1700 1921	Day Dusk	37 202	24.7 26.8	35.19 35.16	5	JJ-6	2 2	0512	Night Night	157	20.4	36.22 35.95	10 5
KK-1	25 10	0926	Day	17	23.4	33.30	6	KK - 1	2 2	1324	Day	18	14.4	33.67	-
KK-2 KK-3	25 10 25 10	0808 0707	Dawn	16	23.6	34.03	4	КК - 2 КК - 3	2222	1414 1503	Day Day	19 20	14.6 14.8	34.07 34.49	-
KK-4	25 10	0543	Dawn Night	19 24	23.5 23.9	34.16 34.40	6	KK = 4	22	1620	Day	26	19.8	35.74	4
KK~ 5	25 10	0313	Night	38	25.9	35.31	18	КК - 5 КК - 6	2222	1831	Dusk	37	21.2	36.10	11
KK-6 LL-1	25 10 25 10	0136 2157	Night Night	97 12	26.0 24.7	35.02 34.70	12	LL-1	2 2 3 2	1957 0715	Dusk Dawn	110	23.2 15.7	35.96 34.57	3
LL-2	25 10	2103	Night	1 37	25.1	34.76	4	LL - 2	32	0624	Night	15	15.8	34.26	5
LL-3 LL-4	25 10 25 10	1940 1754	Dusk	20	25.5	35.11	16	LL-3 LL-4	32 32	0531 0353	Night Night	21 45	15.8 21.7	34,23 35,86	8
LL-5	25 10	1545	Dusk Day	47 169	26.9 27.6	35.30 35.19	11	LL-5	3 2	0239	Night	154	22.4	36.05	10
MM-1	26 10	0212	Night	12	24.4	34.17	7	MM-1	32	1547	Day	13	17.9	35.22	3
MM-2 MM-3	26 10 26 10	0 307 0407	Night Night	15 23	24.9 25.8	34,49	11	MM - 2 MM - 3	32 32	1453 1352	Day	16	18.5	35.47	1
MM-4	26 10	0541	Night	149	25.8	35.12 35.29	9 8	MM-4	3 2	1352 2014	Day Night	26 136	20.0 23.4	35.99 36.04	9
NN-1 NN-2	26 10	1041	Day	11	24.8	32,69	6	NN-1	4 2	0420	Night	14	22.7	36.14	6
NN-2 NN-3	26 10 26 10	1141 1340	Day Day	46 151	25.5 27.0	33.51 35.09	13 14	NN - 2 NN - 3	4242	0251 0147	Night Night	60 153	23.2	36.22	6
NN-4	26 10	1615	Day	308	27.5	35,10	3	NN-4	4 2	0030	Night	316	24.4	35.88 36,11	3
PP-1 PP-2	26 10 26 10	2345 2143	Night	80	26.9	34.04	20	PP-1	4 2	1130	Day	77	23.4	36.47	7
PP-3	26 10	1953	Night Night	247 348	27.5 27.5	35.08 35.07	3 16	PP-2 PP-3	42 42	0816 0929	Dawn Day	219 334	24.2	35.75 36.03	20 12
			0						_			2.24	27.1	10.05	12

.

648 Weight loss of pond-raised channel catfish (*Ictalurus punctatus*) during holding in processing plant vats. By Donald C, Greeoland and Robert L, Gill, December 1971, $m \pm 7$ pp., 3 figs., 2 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

649 Distribution of forage of skipjack tuna (*Euthyonus pelamis*) in the eastern tropical Pacific: By Maurice Blackburn and Michael Laurs. Japuary 1972, in + 16 pp., 7 figs., 3 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

650. Effects of some antioxidants and EDTA on the development of rancidity in Spanish mackerel (Scomberomorus maculatus) doring frizen storage. By Robert N. Farragut. February 1972, w + 12 pp., 6 figs., 12 tables. For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, D.C. 20402.

651 The effect of premortem stress, holding temperatores, and freezing on the hiochemistry and quality of skipjack tuna. By Ladell Crawford, April 1972, iii + 23 pp., 3 figs., 4 tables For sale by the Superintendent of Docomenta, U.S. Government Printing Office, Washington, D.C. 20402.

653. The use of electricity in conjunction with a 12.5-meter (Headrope) Golf-of-Mexico shrimp trawl in Lake Michigao. By James E. Ellis. March 1972, iv + 10 pp., 11 figs , 4 tables. For sale by the Superintendent of Documenta, U.S. Government Printing Office, Washington, D.C. 20402.

654 An electric detector system for recovering internally tagged menhaden, geous *Brevoartia* By R O Parker, Jr. February 1972, in + 7 pp., 3 figs., 1 appendix table. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

655. Immobilization of fingerling salmon and trout by decompression. By Doyle F. Sotherland March 1972, iii + 7 pp., 3 figs., 2 tables. For sale by the Superintendent of Docoments, U.S. Government Printing Office, Washington, D.C. 20402.

656 The calico scallop, Argopecten gibbus, By Donald M Alleb and T J Costello May 1972, in + 19 pp., 9 figs., 1 table. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

657 Making fish protein concentrates by enzymatic hydrolysis. A status report on research and some processes and products studied by NMFS. By Malcoln B. Hale, November 1972, v. \pm 32 pp., 15 figs, 17 tables, 1 appendix table. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

658 List of fishes of Alaska and adjacent waters with a guide to some of their literature. By Jay C. Quast and Elizabeth L. Hall, July 1972, iv + 47 pp. For sale by the Superiotendept of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

659 The Southeast Fisheries Center bionumeric code. Part 1: Fishes, By Harvey R. Bullis, Jr., Richard B. Roe, and Jodith C. Gatlin, July 1972, xl + 95 pp., 2 ligs. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

660 A treshwater fish electro-motivator (FFEM)-its characteristics and operation. By James E. Ellis and Charles C. Hoopes, November 1972, iii + 11 pp., 9 figs.

661 A review of the literature on the development of skipjack tupa fisheries in the ceotral and western Pacific Oceao. By Frank J. Hester and Tamio Otsu, January 1973, ii + 13 pp., 1 fig. For sale hy the Superioteodeot of Documents, U.S. Government Printing Office, Washington, D.C. 20402. 662. Seasonal distribution of tunas and billfishea in the Atlantic. By John P. Wise and Charles W. Davis. January 1973, jv + 24 pp., 13 figs., 4 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

663. Fish larvae collected from the portheasterp Pacific Ocean and Puget Sound during April and May 1967. By Kenneth D. Waldron. December 1972, iii + 16 pp., 2 figs., 1 table, 4 appendix tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

664. Tagging and tag-recovery experiments with Atlantic menhaden, Brevoortia tyrannus. By Richard L. Kroger and Robert L. Dryfons, December 1972, iv + 11 pp., 4 figs., 12 tables. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

665 Larval fish survey of Hombolt Bay, California, By Maxwell B. Eldridge and Charles F. Bryan. December 1972, iii + 8 pp., 8 figs., 1 table. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

666. Distribution and relative abundance of fishes in Newport River, North Carolina, By William R. Turner and George N. Johnson. September 1973, iv \pm 23 pp., 1 fig., 13 tables. For sale by the Superiotendent of Docoments, U.S. Government Printing Office, Washington, D.C. 20402.

667. Ao aoalysis of the commercial lobster (Homorus omercanus) fishery along the coast of Maine, August 1966 through December 1970. By James C. Thomas. June 1973, v + 57 pp., 18 figs., 11 tables. For sale hv the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

668 An annotated bibliography of the cunner, *Tautogolabrus odspersus* (Walhaum). By Fredric M. Serchuk and David W. Frame. May 1973, ii + 43 pp. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C 20402.

669 – Subpoint prediction for direct readout meteorological satellites. By L. E. Eher August 1973, ii + 7 pp , 2 figs., 1 table. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

670. Unharvested fishes in the U.S. commercial fishery of western Lake Erie in 1969. By Harry D. Van Meter. July 1973, ni + 11 pp., 6 figs., 6 tables. For sale by the Superintendent of Documeots, U.S. Government Printing Office, Washington, D.C. 20402.

671 Coastal upwelling indices, west coast of North America, 1946-71 By Andrew Bakun, June 1973, iv + 103 pp., 6 figs., 3 tables, 45 appendix figs. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

672. Seasonal occurrence of young Gulf menhaden and other fishes in a northwestern Florida estuary Ry Marlin E. Tagatz and E. Peter H. Wilkins, August 1973, ni + 14 pp., 1 fug., 4 tables. For sale by the Superintendent of Documents, U.S. Government Printing Oflice, Washington, D.C. 20402.

673. Abundance and distribution of inshore benthic fauna off southwestern Long Island, N Y. By Frank W. Steimle, Jr. and Richard B. Stone, December 1973, iii + 50 pp., 2 figs., 5 appendix tables

674 – Lake Erie bottom trawl explorations, 1962-66. By Edgar W. Bowman, Jaouary 1974, iv. +. 21. pp., 9. figs., 1. table, 7. appendix tables.

UNITED STATES DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION NATIONAL MARINE FISHERIES SERVICE SCIENTIFIC PUBLICATIONS STAFF ROOM 450 1107 N E 45TH ST SEATTLE, WA 98105 OFFICIAL BUSINESS

2

POSTAGE AND FEES PAID U.S. DEPARTMENT OF COMMERCE COM-210

Marine Biological Laboratory S Library - Periodicals Woods Hole, Ma 02543

